Maximizing the performance of heat stressed broilers by optimizing starch-to-lipid ratios, digestible amino acid, and metabolizable energy during the finisher phase
Dilshaan Duhra , Denise Beaulieu , Tory Shynkaruk , Juliano C. de Paula Dorigam , Rose Whelan , Karen Schwean-Lardner
{"title":"Maximizing the performance of heat stressed broilers by optimizing starch-to-lipid ratios, digestible amino acid, and metabolizable energy during the finisher phase","authors":"Dilshaan Duhra , Denise Beaulieu , Tory Shynkaruk , Juliano C. de Paula Dorigam , Rose Whelan , Karen Schwean-Lardner","doi":"10.1016/j.psj.2024.104729","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the effects and interactions among diets formulated to have high starch-to-lipid ratios (S:L), amino acid density [indicated as % digestible lysine (DigLys)], and AME on growth performance and carcass characteristics of heat stressed broilers. A {3,3} simplex lattice design was used to assess relative effects and generate predictive models. Three basal finisher diets were formulated to have the highest S:L ratio (Basal A; 20:1), DigLys (Basal B; 1.30 %), or AME (Basal C; 3300 kcal/kg). These diets were blended at levels of 0.00, 0.33, 0.67, or 1.00 to produce 10 finisher diets. The mixtures allowed varying S:L ratios (4:1 to 20:1), DigLys (0.80 to 1.30 %), and AME (2800 to 3300 kcal/kg) content of diets. sex-separated (<em>n</em> = 6,864) Ross 708 broiler chicks were placed in separate rooms (5 male and 4 female) with a pen stocking density of 31 kg/m<sup>2</sup>. Sex-specific starter and grower diets were fed until d 21. The rooms were maintained at 21°C during d 21 to 27. From d 27 to 32, the birds were subjected to cyclical heat stress, with 12 h of 31°C followed by 12 h of 21°C, with a minimum RH of 50 %. BW and feed residual weights were measured on d 21, 27, and 32, then used to calculate BW gain (BWG) and feed-to-gain ratios (F:G). On d 33, 20 birds per treatment per sex were slaughtered to determine carcass characteristics. Under these conditions (d 21 to 32), maximum male BWG of 926 g was estimated to occur when fed a diet comprised of 42.2 % Basal B and 57.8 % Basal C with a S:L ratio of 4:1, AME of 3089 kcal/kg, and 1.01 % DigLys. Diet did not influence female BWG during heat stress. Although a practical recommendation was not possible for optimal breast meat yield (% live weight) and F:G ratios, the results, indicated that increasing DigLys would improve these parameters under heat stress.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 2","pages":"Article 104729"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757756/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579124013075","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effects and interactions among diets formulated to have high starch-to-lipid ratios (S:L), amino acid density [indicated as % digestible lysine (DigLys)], and AME on growth performance and carcass characteristics of heat stressed broilers. A {3,3} simplex lattice design was used to assess relative effects and generate predictive models. Three basal finisher diets were formulated to have the highest S:L ratio (Basal A; 20:1), DigLys (Basal B; 1.30 %), or AME (Basal C; 3300 kcal/kg). These diets were blended at levels of 0.00, 0.33, 0.67, or 1.00 to produce 10 finisher diets. The mixtures allowed varying S:L ratios (4:1 to 20:1), DigLys (0.80 to 1.30 %), and AME (2800 to 3300 kcal/kg) content of diets. sex-separated (n = 6,864) Ross 708 broiler chicks were placed in separate rooms (5 male and 4 female) with a pen stocking density of 31 kg/m2. Sex-specific starter and grower diets were fed until d 21. The rooms were maintained at 21°C during d 21 to 27. From d 27 to 32, the birds were subjected to cyclical heat stress, with 12 h of 31°C followed by 12 h of 21°C, with a minimum RH of 50 %. BW and feed residual weights were measured on d 21, 27, and 32, then used to calculate BW gain (BWG) and feed-to-gain ratios (F:G). On d 33, 20 birds per treatment per sex were slaughtered to determine carcass characteristics. Under these conditions (d 21 to 32), maximum male BWG of 926 g was estimated to occur when fed a diet comprised of 42.2 % Basal B and 57.8 % Basal C with a S:L ratio of 4:1, AME of 3089 kcal/kg, and 1.01 % DigLys. Diet did not influence female BWG during heat stress. Although a practical recommendation was not possible for optimal breast meat yield (% live weight) and F:G ratios, the results, indicated that increasing DigLys would improve these parameters under heat stress.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.