Sara Zuluaga , Geysson Javier Fernandez , Ana María Mejía-Jaramillo , Carl Lowenberger , Omar Triana-Chavez
{"title":"Exploring novel pyrethroid resistance mechanisms through RNA-seq in Triatoma dimidiata from Colombia","authors":"Sara Zuluaga , Geysson Javier Fernandez , Ana María Mejía-Jaramillo , Carl Lowenberger , Omar Triana-Chavez","doi":"10.1016/j.cris.2024.100103","DOIUrl":null,"url":null,"abstract":"<div><div>Pyrethroids are the most widely used insecticides for controlling insect vectors carrying medically and economically significant pathogens. In Colombia, studies on triatomine insecticide resistance are limited. Due to the increasing challenge of insecticide resistance, this work focuses on determining resistance to different pyrethroid insecticides in populations of <em>Triatoma dimidiata</em> from Colombia. To define the possible causes of resistance, three potential molecular mechanisms were explored: 1) mutations in the coding region of the voltage-gated sodium channel gene (<em>vgsc</em>), the insecticide target site; 2) modulation of enzymatic activity associated with metabolic resistance; and 3) changes in the mRNA profiles using RNA-seq. The results showed that the field population of <em>T. dimidiata</em> was resistant to lambda-cyhalothrin and deltamethrin insecticides. Insects surviving sublethal doses of insecticides did not exhibit the classical mutations in the <em>vgsc</em> gene. Transcriptomic profile analyses of <em>T. dimidiata</em> revealed differentially regulated genes in field and laboratory populations under selective pressure with lambda-cyhalothrin. Gene enrichment analysis showed the positive regulation of transcripts related to detoxifying enzymes and mitochondrial proteins, which could play a significant role in insecticide resistance. This comprehensive investigation is crucial for providing insights into resistance mechanisms and generating strategies to manage these critical vector species.</div></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"7 ","pages":"Article 100103"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696854/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Insect Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666515824000337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pyrethroids are the most widely used insecticides for controlling insect vectors carrying medically and economically significant pathogens. In Colombia, studies on triatomine insecticide resistance are limited. Due to the increasing challenge of insecticide resistance, this work focuses on determining resistance to different pyrethroid insecticides in populations of Triatoma dimidiata from Colombia. To define the possible causes of resistance, three potential molecular mechanisms were explored: 1) mutations in the coding region of the voltage-gated sodium channel gene (vgsc), the insecticide target site; 2) modulation of enzymatic activity associated with metabolic resistance; and 3) changes in the mRNA profiles using RNA-seq. The results showed that the field population of T. dimidiata was resistant to lambda-cyhalothrin and deltamethrin insecticides. Insects surviving sublethal doses of insecticides did not exhibit the classical mutations in the vgsc gene. Transcriptomic profile analyses of T. dimidiata revealed differentially regulated genes in field and laboratory populations under selective pressure with lambda-cyhalothrin. Gene enrichment analysis showed the positive regulation of transcripts related to detoxifying enzymes and mitochondrial proteins, which could play a significant role in insecticide resistance. This comprehensive investigation is crucial for providing insights into resistance mechanisms and generating strategies to manage these critical vector species.