Foundational artificial intelligence models and modern medical practice.

BJR artificial intelligence Pub Date : 2024-12-18 eCollection Date: 2025-01-01 DOI:10.1093/bjrai/ubae018
Alpay Medetalibeyoglu, Yury S Velichko, Eric M Hart, Ulas Bagci
{"title":"Foundational artificial intelligence models and modern medical practice.","authors":"Alpay Medetalibeyoglu, Yury S Velichko, Eric M Hart, Ulas Bagci","doi":"10.1093/bjrai/ubae018","DOIUrl":null,"url":null,"abstract":"<p><p>Our opinion piece pays homage to the evolution of medical practices, tracing back to the era of Hippocrates, through significant historical milestones, and drawing parallels with the principles underpinning foundational artificial intelligence (AI) models. It emphasizes the shared ethos of both domains: a commitment to comprehensive care that values diverse data integration and individualized patient treatment. The excitement surrounding foundation models in medical imaging is understandable. However, a critical and cautious approach is crucial before widespread adoption. By addressing the present 4 major limitations (ie, data bias and generalizability, interpretability of AI models, data scarcity and diversity, and computational resources and infrastructure) and fostering a culture of rigorous research, we can unlock the true potential of these models and revolutionize medical care. This critique (opinion) paper highlights the need for a more measured approach in the field of <i>foundation AI models</i> for medicine in general and for medical imaging in particular. It emphasizes the importance of tackling core challenges before rushing toward clinical applications. By focusing on robust methodologies and addressing limitations, researchers can ensure the development of truly impactful and trustworthy models for the betterment of healthcare.</p>","PeriodicalId":517427,"journal":{"name":"BJR artificial intelligence","volume":"2 1","pages":"ubae018"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697073/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BJR artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bjrai/ubae018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our opinion piece pays homage to the evolution of medical practices, tracing back to the era of Hippocrates, through significant historical milestones, and drawing parallels with the principles underpinning foundational artificial intelligence (AI) models. It emphasizes the shared ethos of both domains: a commitment to comprehensive care that values diverse data integration and individualized patient treatment. The excitement surrounding foundation models in medical imaging is understandable. However, a critical and cautious approach is crucial before widespread adoption. By addressing the present 4 major limitations (ie, data bias and generalizability, interpretability of AI models, data scarcity and diversity, and computational resources and infrastructure) and fostering a culture of rigorous research, we can unlock the true potential of these models and revolutionize medical care. This critique (opinion) paper highlights the need for a more measured approach in the field of foundation AI models for medicine in general and for medical imaging in particular. It emphasizes the importance of tackling core challenges before rushing toward clinical applications. By focusing on robust methodologies and addressing limitations, researchers can ensure the development of truly impactful and trustworthy models for the betterment of healthcare.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基础人工智能模型与现代医学实践。
我们的观点文章向医疗实践的演变致敬,追溯至希波克拉底时代,通过重要的历史里程碑,并与基础人工智能(AI)模型的基础原理相提并论。它强调了这两个领域的共同精神:致力于综合护理,重视多样化的数据整合和个性化的患者治疗。医学影像学中基础模型的兴奋是可以理解的。然而,在广泛采用之前,一个批判和谨慎的方法是至关重要的。通过解决目前的4个主要限制(即数据偏差和概括性、人工智能模型的可解释性、数据稀缺性和多样性、计算资源和基础设施),并培养严谨的研究文化,我们可以释放这些模型的真正潜力,并彻底改变医疗保健。这篇评论(意见)论文强调了在医学基础人工智能模型领域,特别是医学成像领域,需要采取更慎重的方法。它强调了在冲向临床应用之前解决核心挑战的重要性。通过专注于稳健的方法和解决局限性,研究人员可以确保开发真正有影响力和值得信赖的模型,以改善医疗保健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large language models in cancer: potentials, risks, and safeguards. Foundational artificial intelligence models and modern medical practice. AI and machine learning in medical imaging: key points from development to translation. Artificial intelligence in medicine: mitigating risks and maximizing benefits via quality assurance, quality control, and acceptance testing. Auto-segmentation of neck nodal metastases using self-distilled masked image transformer on longitudinal MR images.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1