Ben Barber, Kenton M. Barnes, Tomasz Bialas, Okan Buğdaycı, Earl T. Campbell, Neil I. Gillespie, Kauser Johar, Ram Rajan, Adam W. Richardson, Luka Skoric, Canberk Topal, Mark L. Turner, Abbas B. Ziad
{"title":"A real-time, scalable, fast and resource-efficient decoder for a quantum computer","authors":"Ben Barber, Kenton M. Barnes, Tomasz Bialas, Okan Buğdaycı, Earl T. Campbell, Neil I. Gillespie, Kauser Johar, Ram Rajan, Adam W. Richardson, Luka Skoric, Canberk Topal, Mark L. Turner, Abbas B. Ziad","doi":"10.1038/s41928-024-01319-5","DOIUrl":null,"url":null,"abstract":"<p>The development of quantum computers will require the careful management of the noise effects associated with qubit performance. However, the decoders responsible for diagnosing noise-induced computational errors must use resources efficiently to enable scaling to large qubit counts and cryogenic operation. They must also operate at speed, to avoid an exponential slowdown in the logical clock rate of the quantum computer. To overcome these challenges, we introduce the Collision Clustering decoder and demonstrate its implementation on field-programmable gate array (FPGA) and application-specific integrated circuit (ASIC) hardware. We simulate logical memory experiments using the leading quantum error correction scheme (the surface code) and demonstrate megahertz decoding speed—matching the requirements of fast-operating modalities such as superconducting qubits—up to an 881 qubit surface code with the FPGA and 1,057 qubit surface code with the ASIC. The ASIC design occupies 0.06 mm<sup>2</sup> and consumes only 8 mW of power.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"125 1","pages":""},"PeriodicalIF":33.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-024-01319-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The development of quantum computers will require the careful management of the noise effects associated with qubit performance. However, the decoders responsible for diagnosing noise-induced computational errors must use resources efficiently to enable scaling to large qubit counts and cryogenic operation. They must also operate at speed, to avoid an exponential slowdown in the logical clock rate of the quantum computer. To overcome these challenges, we introduce the Collision Clustering decoder and demonstrate its implementation on field-programmable gate array (FPGA) and application-specific integrated circuit (ASIC) hardware. We simulate logical memory experiments using the leading quantum error correction scheme (the surface code) and demonstrate megahertz decoding speed—matching the requirements of fast-operating modalities such as superconducting qubits—up to an 881 qubit surface code with the FPGA and 1,057 qubit surface code with the ASIC. The ASIC design occupies 0.06 mm2 and consumes only 8 mW of power.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.