Unveiling the pH-universal hydrogen evolution ability of SnS/NiFe2O4 heterostructure electrocatalyst

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2025-01-07 DOI:10.1016/j.apsusc.2025.162324
G. John , Vijaya Gopalan Sree , M. Navaneethan , P. Justin Jesuraj
{"title":"Unveiling the pH-universal hydrogen evolution ability of SnS/NiFe2O4 heterostructure electrocatalyst","authors":"G. John ,&nbsp;Vijaya Gopalan Sree ,&nbsp;M. Navaneethan ,&nbsp;P. Justin Jesuraj","doi":"10.1016/j.apsusc.2025.162324","DOIUrl":null,"url":null,"abstract":"<div><div>Utilizing an electrocatalyst proficient in executing the hydrogen evolution reaction (HER) across various pH holds promise for developing efficient electrolysers. To harness the supreme capabilities of ternary transition metal oxides and sulfides in HER, electrodes composed of either nickel ferric oxide (NiFe<sub>2</sub>O<sub>4</sub>), copper ferric oxide, cobalt ferric oxide were fabricated as substratum with tin sulfide (SnS) superstratum using the hydrothermal method. Among them, the binder-free SnS/NiFe<sub>2</sub>O<sub>4</sub> electrocatalyst demonstrated enriched surface morphology and electrochemical active sites, resulting in reduced overpotentials for HER under alkaline (68 mV @ 10 mA/cm<sup>2</sup>) and acidic conditions (35 mV @10 mA/cm<sup>2</sup>). Furthermore, SnS/NiFe<sub>2</sub>O<sub>4</sub> has demonstrated a cell voltage of 1.48 V (@10 mA/cm<sup>2</sup>) while deployed it as cathode in an overall water splitting cell under alkaline medium. The performances of SnS/NiFe<sub>2</sub>O<sub>4</sub> are further supported by oxygen vacancies encompassed by the creation of Sn-O bonds at SnS/NiFe<sub>2</sub>O<sub>4</sub> interface. The enhanced electron transfer towards superstratum in SnS/NiFe<sub>2</sub>O<sub>4</sub> is helped in lowering H<sup>+</sup> adsorption energies favouring efficient HER activity across pH-universal conditions. Additionally, the presence of the interfacial Sn-O bonds played a key role in stabilizing the structure and the corresponding catalyst showed a reduced current degradation rate in Chronoamperometry tests, as confirmed by post-XPS analysis.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"687 ","pages":"Article 162324"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225000376","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing an electrocatalyst proficient in executing the hydrogen evolution reaction (HER) across various pH holds promise for developing efficient electrolysers. To harness the supreme capabilities of ternary transition metal oxides and sulfides in HER, electrodes composed of either nickel ferric oxide (NiFe2O4), copper ferric oxide, cobalt ferric oxide were fabricated as substratum with tin sulfide (SnS) superstratum using the hydrothermal method. Among them, the binder-free SnS/NiFe2O4 electrocatalyst demonstrated enriched surface morphology and electrochemical active sites, resulting in reduced overpotentials for HER under alkaline (68 mV @ 10 mA/cm2) and acidic conditions (35 mV @10 mA/cm2). Furthermore, SnS/NiFe2O4 has demonstrated a cell voltage of 1.48 V (@10 mA/cm2) while deployed it as cathode in an overall water splitting cell under alkaline medium. The performances of SnS/NiFe2O4 are further supported by oxygen vacancies encompassed by the creation of Sn-O bonds at SnS/NiFe2O4 interface. The enhanced electron transfer towards superstratum in SnS/NiFe2O4 is helped in lowering H+ adsorption energies favouring efficient HER activity across pH-universal conditions. Additionally, the presence of the interfacial Sn-O bonds played a key role in stabilizing the structure and the corresponding catalyst showed a reduced current degradation rate in Chronoamperometry tests, as confirmed by post-XPS analysis.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示了SnS/NiFe2O4异质结构电催化剂在ph范围内的析氢能力
利用电催化剂在不同的pH值中熟练地执行析氢反应(HER),有望开发高效的电解槽。为了充分利用三元过渡金属氧化物和硫化物在HER中的优越性能,采用水热法制备了由氧化铁镍(NiFe2O4)、氧化铁铜、氧化铁钴作为衬底和硫化锡(SnS)构成的电极。其中,无粘结剂的SnS/NiFe2O4电催化剂表现出丰富的表面形貌和电化学活性位点,导致碱性(68 mV @10 mA/cm2)和酸性(35 mV @10 mA/cm2)条件下HER过电位降低。此外,在碱性介质下,作为阴极的SnS/NiFe2O4在整体水分解电池中表现出1.48 V(@10 mA/cm2)的电池电压。SnS/NiFe2O4界面上Sn-O键形成的氧空位进一步支持了SnS/NiFe2O4的性能。SnS/NiFe2O4中电子向上层转移的增强有助于降低H+吸附能,有利于在ph通用条件下高效的HER活性。此外,界面Sn-O键的存在在稳定结构方面发挥了关键作用,相应的催化剂在Chronoamperometry测试中显示出降低的电流降解率,这一点得到了后xps分析的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Pt/ γ -graphyne as a new electrode material for fuel cells Ultrathin, polishing-free diamond anti-reflective films for mid-wave infrared (MWIR) windows promoted by electrostatic spin-coating seeding Reduction-tailored graphene oxide for high-performance electrorheological fluids: bridging conductivity and dielectric design In-situ hydrothermal fabrication of Bi25FeO40/BiFeO3 heterojunction with trinary synergy of piezo-photocatalysis and peroxymonosulfate activation for efficient tetracycline degradation Effects of pre-deposited ultra-thin Al2O3 interlayer and post-annealing on SiO2/4H-SiC MOS capacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1