Polymer Biodegradation in Aquatic Environments: A Machine Learning Model Informed by Meta-Analysis of Structure-Biodegradation Relationships

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2025-01-07 DOI:10.1021/acs.est.4c11282
Chengrui Lin, Huichun Zhang
{"title":"Polymer Biodegradation in Aquatic Environments: A Machine Learning Model Informed by Meta-Analysis of Structure-Biodegradation Relationships","authors":"Chengrui Lin, Huichun Zhang","doi":"10.1021/acs.est.4c11282","DOIUrl":null,"url":null,"abstract":"Polymers are widely produced and contribute significantly to environmental pollution due to their low recycling rates and persistence in natural environments. Biodegradable polymers, while promising for reducing environmental impact, account for less than 2% of total polymer production. To expand the availability of biodegradable polymers, research has explored structure-biodegradability relationships, yet most studies focus on specific polymers, necessitating further exploration across diverse polymers. This study addresses this gap by curating an extensive aerobic biodegradation data set of 74 polymers and 1779 data points drawn from both published literature and 28 sets of original experiments. We then conducted a meta-analysis to evaluate the effects of experimental conditions, polymer structure, and the combined impact of polymer structure and properties on biodegradation. Next, we developed a machine learning model to predict polymer biodegradation in aquatic environments. The model achieved an <i>R</i><sub>test</sub><sup>2</sup> score of 0.66 using Morgan fingerprints, detailed experimental conditions, and thermal decomposition temperature (<i>T</i><sub>d</sub>) as the input descriptors. The model’s robustness was supported by a feature importance analysis, revealing that substructure R−O−R in polyethers and polysaccharides positively influenced biodegradation, while molecular weight, <i>T</i><sub>d</sub>, substructure −OC(═O)− in polyesters and polyalkylene carbonates, side chains, and aromatic rings negatively impacted it. Additionally, validation against the meta-analysis findings confirmed that predictions for unseen test sets aligned with established empirical biodegradation knowledge. This study not only expands our understanding across diverse polymers but also offers a valuable tool for designing environmentally friendly polymers.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"79 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c11282","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polymers are widely produced and contribute significantly to environmental pollution due to their low recycling rates and persistence in natural environments. Biodegradable polymers, while promising for reducing environmental impact, account for less than 2% of total polymer production. To expand the availability of biodegradable polymers, research has explored structure-biodegradability relationships, yet most studies focus on specific polymers, necessitating further exploration across diverse polymers. This study addresses this gap by curating an extensive aerobic biodegradation data set of 74 polymers and 1779 data points drawn from both published literature and 28 sets of original experiments. We then conducted a meta-analysis to evaluate the effects of experimental conditions, polymer structure, and the combined impact of polymer structure and properties on biodegradation. Next, we developed a machine learning model to predict polymer biodegradation in aquatic environments. The model achieved an Rtest2 score of 0.66 using Morgan fingerprints, detailed experimental conditions, and thermal decomposition temperature (Td) as the input descriptors. The model’s robustness was supported by a feature importance analysis, revealing that substructure R−O−R in polyethers and polysaccharides positively influenced biodegradation, while molecular weight, Td, substructure −OC(═O)− in polyesters and polyalkylene carbonates, side chains, and aromatic rings negatively impacted it. Additionally, validation against the meta-analysis findings confirmed that predictions for unseen test sets aligned with established empirical biodegradation knowledge. This study not only expands our understanding across diverse polymers but also offers a valuable tool for designing environmentally friendly polymers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Using Large Language Models to Assist Antimicrobial Resistance Policy Development: Integrating the Environment into Health Protection Planning Combined μ-XRF and XANES Track the Behavior of Pb from PM2.5 Entering Chinese Cabbage Leaves Contrasting Summertime Trends in Vehicle Combustion Efficiency in Los Angeles, CA and Salt Lake City, UT Plutonium Marker for the Great Acceleration by Intensified Human Activities Airborne Staphylococcus aureus Exposure Induces Depression-like Behaviors in Mice via Abnormal Neural Oscillation and Mitochondrial Dysfunction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1