Septuple XBi2Te4 (X=Ge, Sn, Pb) intercalated MnBi2Te4 for realizing interlayer ferromagnetism and quantum anomalous hall effect

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Quantum Materials Pub Date : 2025-01-07 DOI:10.1038/s41535-024-00723-6
Ruixia Yang, Xiaoxiao Man, Jiahui Peng, Jingjing Zhang, Fei Wang, Fang Wang, Huisheng Zhang, Xiaohong Xu
{"title":"Septuple XBi2Te4 (X=Ge, Sn, Pb) intercalated MnBi2Te4 for realizing interlayer ferromagnetism and quantum anomalous hall effect","authors":"Ruixia Yang, Xiaoxiao Man, Jiahui Peng, Jingjing Zhang, Fei Wang, Fang Wang, Huisheng Zhang, Xiaohong Xu","doi":"10.1038/s41535-024-00723-6","DOIUrl":null,"url":null,"abstract":"<p>Realizing the quantum anomalous Hall effect (QAHE) at high temperatures remains a significant challenge in condensed matter physics. MnBi<sub>2</sub>Te<sub>4</sub>, an intrinsic magnetic topological insulator, presents a promising platform for QAHE. However, its inherent interlayer antiferromagnetic coupling hinders practical realization at high temperatures. In this study, we propose a novel approach to achieve interlayer ferromagnetic (FM) coupling in MBT bilayer by intercalating the septuple-layer of topological insulators XBi<sub>2</sub>Te<sub>4</sub> (X=Ge, Sn, Pb). Using first-principles calculations, we demonstrate that the <i>p</i><sub><i>z</i></sub> orbital of the X atom mediates interactions between interlayer Mn atoms, enabling FM coupling. Monte Carlo simulations predict a magnetic transition temperature of 38 K for the MnBi<sub>2</sub>Te<sub>4</sub>/PbBi<sub>2</sub>Te<sub>4</sub>/MnBi<sub>2</sub>Te<sub>4</sub> heterostructure. Our band structure and topological analyses confirm the preservation of QAHE in all MnBi<sub>2</sub>Te<sub>4</sub>/XBi<sub>2</sub>Te<sub>4</sub>/MnBi<sub>2</sub>Te<sub>4</sub> heterostructures, while the MnBi<sub>2</sub>Te<sub>4</sub>/PbBi<sub>2</sub>Te<sub>4</sub>/MnBi<sub>2</sub>Te<sub>4</sub> heterostructure exhibits a topological band gap of 72 meV, significantly exceeding that of the pure MnBi<sub>2</sub>Te<sub>4</sub> bilayer. Furthermore, a continuum model is developed to elucidate the underlying mechanism of the nontrivial topological states. Our work provides a practical pathway to achieving interlayer FM coupling in MnBi<sub>2</sub>Te<sub>4</sub> bilayers, paving the way for high-temperature QAHE and advancing the development of magnetic topological insulators for quantum and spintronic applications.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"117 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00723-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Realizing the quantum anomalous Hall effect (QAHE) at high temperatures remains a significant challenge in condensed matter physics. MnBi2Te4, an intrinsic magnetic topological insulator, presents a promising platform for QAHE. However, its inherent interlayer antiferromagnetic coupling hinders practical realization at high temperatures. In this study, we propose a novel approach to achieve interlayer ferromagnetic (FM) coupling in MBT bilayer by intercalating the septuple-layer of topological insulators XBi2Te4 (X=Ge, Sn, Pb). Using first-principles calculations, we demonstrate that the pz orbital of the X atom mediates interactions between interlayer Mn atoms, enabling FM coupling. Monte Carlo simulations predict a magnetic transition temperature of 38 K for the MnBi2Te4/PbBi2Te4/MnBi2Te4 heterostructure. Our band structure and topological analyses confirm the preservation of QAHE in all MnBi2Te4/XBi2Te4/MnBi2Te4 heterostructures, while the MnBi2Te4/PbBi2Te4/MnBi2Te4 heterostructure exhibits a topological band gap of 72 meV, significantly exceeding that of the pure MnBi2Te4 bilayer. Furthermore, a continuum model is developed to elucidate the underlying mechanism of the nontrivial topological states. Our work provides a practical pathway to achieving interlayer FM coupling in MnBi2Te4 bilayers, paving the way for high-temperature QAHE and advancing the development of magnetic topological insulators for quantum and spintronic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在高温条件下实现量子反常霍尔效应(QAHE)仍然是凝聚态物理学的一项重大挑战。MnBi2Te4 是一种本征磁性拓扑绝缘体,为 QAHE 提供了一个前景广阔的平台。然而,其固有的层间反铁磁耦合阻碍了高温下的实际实现。在本研究中,我们提出了一种新方法,通过插层拓扑绝缘体 XBi2Te4(X=锗、锡、铅)的七重层,在 MBT 双层中实现层间铁磁(FM)耦合。通过第一原理计算,我们证明了 X 原子的 pz 轨道介导了层间锰原子之间的相互作用,从而实现了调频耦合。蒙特卡洛模拟预测 MnBi2Te4/PbBi2Te4/MnBi2Te4 异质结构的磁转变温度为 38 K。我们的带状结构和拓扑分析证实,所有 MnBi2Te4/XBi2Te4/MnBi2Te4 异质结构都保留了 QAHE,而 MnBi2Te4/PbBi2Te4/MnBi2Te4 异质结构的拓扑带隙为 72 meV,大大超过了纯 MnBi2Te4 双层结构。此外,我们还建立了一个连续体模型,以阐明非难拓扑态的基本机制。我们的工作为在 MnBi2Te4 双层膜中实现层间调频耦合提供了一条切实可行的途径,为高温 QAHE 铺平了道路,并推动了用于量子和自旋电子应用的磁性拓扑绝缘体的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
期刊最新文献
Robust quantum spin liquid state in the presence of giant magnetic isotope effect in D3LiIr2O6 Magnetoelectric effect in van der Waals magnets Unconventional broadening of Rashba spin splitting in a Au2Sb surface alloy with periodic structural defects Electronic spin susceptibility in metallic strontium titanate Septuple XBi2Te4 (X=Ge, Sn, Pb) intercalated MnBi2Te4 for realizing interlayer ferromagnetism and quantum anomalous hall effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1