Electrochemical reactor with carbon membrane electrodes for efficient phenol removal via anode and cathode synergism

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL npj Clean Water Pub Date : 2025-01-07 DOI:10.1038/s41545-024-00432-4
Zishang Chen, Hong Wang, Yuxuan Zhu, Xiaoping Chen, Shuanglin Gui, Aijing Ma, Jianxin Li
{"title":"Electrochemical reactor with carbon membrane electrodes for efficient phenol removal via anode and cathode synergism","authors":"Zishang Chen, Hong Wang, Yuxuan Zhu, Xiaoping Chen, Shuanglin Gui, Aijing Ma, Jianxin Li","doi":"10.1038/s41545-024-00432-4","DOIUrl":null,"url":null,"abstract":"<p>Current electrochemical membrane reactors (EMRs) focus on half-cell reactions, which limits their efficiency. Herein, an EMR-P with full-cell reactions was constructed using a carbon membrane (CM) as the cathode and a TiO<sub>2</sub>-loaded CM as the anode. Noteworthy, this proposed innovative design has no ion-exchange membrane and consists of two permeates for anodic electrocatalytic and cathodic electro-Fenton processes. Results showed that the removal rates of phenol and COD by EMR-P were 99.2% and 93.9%, respectively, with energy consumption of 0.43 kWh kg COD<sup>–1</sup>, which were superior to those of other EMRs. Such superior performance of EMR-P was attributed to the synergism of electro-Fenton and electrocatalytic oxidation, as well as the high adsorption property of CM, which promoted <span>\\({1\\atop}{\\rm{O}}_{2}\\)</span> generation and COD removal. Additionally, the cathode made more contribution to the COD removal (59.0%) than the anode (41.0%). Overall, this work provides several insights into the design of EMRs for cleaning industrial wastewater.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"35 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-024-00432-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Current electrochemical membrane reactors (EMRs) focus on half-cell reactions, which limits their efficiency. Herein, an EMR-P with full-cell reactions was constructed using a carbon membrane (CM) as the cathode and a TiO2-loaded CM as the anode. Noteworthy, this proposed innovative design has no ion-exchange membrane and consists of two permeates for anodic electrocatalytic and cathodic electro-Fenton processes. Results showed that the removal rates of phenol and COD by EMR-P were 99.2% and 93.9%, respectively, with energy consumption of 0.43 kWh kg COD–1, which were superior to those of other EMRs. Such superior performance of EMR-P was attributed to the synergism of electro-Fenton and electrocatalytic oxidation, as well as the high adsorption property of CM, which promoted \({1\atop}{\rm{O}}_{2}\) generation and COD removal. Additionally, the cathode made more contribution to the COD removal (59.0%) than the anode (41.0%). Overall, this work provides several insights into the design of EMRs for cleaning industrial wastewater.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用碳膜电极的电化学反应器,通过阳极和阴极协同作用高效去除苯酚
目前的电化学膜反应器主要用于半电池反应,这限制了其效率。本文以碳膜(CM)为阴极,负载tio2的CM为阳极,构建了具有全电池反应的EMR-P。值得注意的是,这种创新的设计没有离子交换膜,由阳极电催化和阴极电芬顿过程的两个渗透层组成。结果表明,EMR-P对苯酚和COD的去除率为99.2%% and 93.9%, respectively, with energy consumption of 0.43 kWh kg COD–1, which were superior to those of other EMRs. Such superior performance of EMR-P was attributed to the synergism of electro-Fenton and electrocatalytic oxidation, as well as the high adsorption property of CM, which promoted \({1\atop}{\rm{O}}_{2}\) generation and COD removal. Additionally, the cathode made more contribution to the COD removal (59.0%) than the anode (41.0%). Overall, this work provides several insights into the design of EMRs for cleaning industrial wastewater.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
期刊最新文献
Quantum machine learning regression optimisation for full-scale sewage sludge anaerobic digestion Preparation of unsaturated MIL-101(Cr) with Lewis acid sites for the extraordinary adsorption of anionic dyes Antimicrobial resistant enteric bacteria are widely distributed among environmental water sources in Dhaka, Bangladesh Integrating livestock and aquatic plant towards mitigating antibiotic resistance transmission from swine wastewater Machine learning prediction of ammonia nitrogen adsorption on biochar with model evaluation and optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1