Changes in soil pH and nutrient stoichiometry alter the effects of litter addition on soil nitrogen transformations and nitrous oxide emissions

IF 3.9 2区 农林科学 Q1 AGRONOMY Plant and Soil Pub Date : 2025-01-07 DOI:10.1007/s11104-024-07145-0
Jing Wang, Miaomiao Cao, Uwiragiye Yves, Meiqi Chen, Yi Cheng, Zezhong Lin, Renhua Zheng
{"title":"Changes in soil pH and nutrient stoichiometry alter the effects of litter addition on soil nitrogen transformations and nitrous oxide emissions","authors":"Jing Wang, Miaomiao Cao, Uwiragiye Yves, Meiqi Chen, Yi Cheng, Zezhong Lin, Renhua Zheng","doi":"10.1007/s11104-024-07145-0","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Chinese-fir (<i>Cunninghamia lanceolata</i>) clonal varieties are used to establish fast-growing plantations in subtropical China and produce litters of varying quality. Litter serves as primary sources of carbon (C) and nitrogen (N) inputs to soils in forests and plays an important role in regulating soil N transformations, including N losses via nitrous oxide (N<sub>2</sub>O) emissions. However, little is known about the effects of litter addition from different Chinese-fir clones on soil N dynamics.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We conducted an aerobic incubation experiment to investigate net rates of N mineralization (NMR) and nitrification (NNR) and N<sub>2</sub>O emissions in soils from seven forests planted with different Chinese-fir clones as affected by litter addition at the rates of 0, 0.3%, 0.6%, and 0.9% of dry soil weight.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Both NMR and NNR decreased linearly with increasing litter addition rate, while soil respiration and N<sub>2</sub>O emissions exhibited the opposite, regardless of the clonal treatment. In addition, NMR and NNR, expressed as mg N per g carbon (C) applied, either decreased or increased logarithmically with increasing soil pH and C to phosphorus (P) ratio, respectively. Structural equation modeling showed that litter properties (i.e., C/N and total P content) drive NMR and NNR by influencing soil respiration, pH, and nutrient stoichiometry. However, the response of N<sub>2</sub>O emissions to litter addition is not associated with either soil or litter properties.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Our findings indicate that effects of adding litter from Chinese-fir clones on soil N transformations are dependent on edaphic factors, which are primarily influenced by litter quality.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"203 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07145-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims

Chinese-fir (Cunninghamia lanceolata) clonal varieties are used to establish fast-growing plantations in subtropical China and produce litters of varying quality. Litter serves as primary sources of carbon (C) and nitrogen (N) inputs to soils in forests and plays an important role in regulating soil N transformations, including N losses via nitrous oxide (N2O) emissions. However, little is known about the effects of litter addition from different Chinese-fir clones on soil N dynamics.

Methods

We conducted an aerobic incubation experiment to investigate net rates of N mineralization (NMR) and nitrification (NNR) and N2O emissions in soils from seven forests planted with different Chinese-fir clones as affected by litter addition at the rates of 0, 0.3%, 0.6%, and 0.9% of dry soil weight.

Results

Both NMR and NNR decreased linearly with increasing litter addition rate, while soil respiration and N2O emissions exhibited the opposite, regardless of the clonal treatment. In addition, NMR and NNR, expressed as mg N per g carbon (C) applied, either decreased or increased logarithmically with increasing soil pH and C to phosphorus (P) ratio, respectively. Structural equation modeling showed that litter properties (i.e., C/N and total P content) drive NMR and NNR by influencing soil respiration, pH, and nutrient stoichiometry. However, the response of N2O emissions to litter addition is not associated with either soil or litter properties.

Conclusions

Our findings indicate that effects of adding litter from Chinese-fir clones on soil N transformations are dependent on edaphic factors, which are primarily influenced by litter quality.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
期刊最新文献
Rooting for microbes: impact of root architecture on the microbial community and function in top- and subsoil Exploring the potential of seed inoculation with microbial consortia to mitigate drought stress in maize plants under greenhouse conditions Evolutionary history of mixed tree species improved soil nutrient content of Pinus massoniana plantation Organic amendments with low C/N ratios enhanced the deposition of crop root exudates into stable soil organic carbon in a sodic soil Translocation coefficients of heavy metals in the soil-rice system and their environmental implication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1