Dingqiang Fan, Jian-Xin Lu, Xue-Sen Lv, Takafumi Noguchi, Rui Yu, Chi Sun Poon
{"title":"Carbon capture and storage CO2 foam concrete towards higher performance: Design, preparation and characteristics","authors":"Dingqiang Fan, Jian-Xin Lu, Xue-Sen Lv, Takafumi Noguchi, Rui Yu, Chi Sun Poon","doi":"10.1016/j.cemconcomp.2025.105925","DOIUrl":null,"url":null,"abstract":"This study introduces a novel strategy for carbon capture and utilization by incorporating CO<sub>2</sub> into foams to develop CO<sub>2</sub> foam concrete (CFC) with high performance. A conceptual design approach for CFC was first proposed by incorporating tailor-made CO<sub>2</sub> foam bubbles into an optimized cement-based paste. The engineered CO<sub>2</sub> foam exhibited fine size and good stability, but increasing CO<sub>2</sub> concentration decreased stability. Then, the CO<sub>2</sub> foam was used to fabricate CFC with high strength (about twice that of normal foam concrete at a similar density), excellent durability (comparable to normal concrete), and low thermal conductivity. Moreover, it was demonstrated that CO<sub>2</sub> foam induced positive internal carbonation effects to further enhance the CFC performance. These effects included promoting cement hydration efficiency and generating CaCO<sub>3</sub> on the foam wall for strength enhancement. Also, the rational use of CO<sub>2</sub> foams optimized the CFC pore structures, including reducing porosity, refining pore size, and improving pore uniformity. The CFC exhibited exceptional carbon capture, sequestering 87 kg of CO<sub>2</sub> per m<sup>3</sup> of concrete by internal and external carbonations (active carbon reduction), and could reduce electricity consumption and the corresponding carbon emissions (indirect carbon reduction). This innovative material offers a promising pathway towards sustainable construction and carbon neutrality.","PeriodicalId":519419,"journal":{"name":"Cement and Concrete Composites","volume":"203 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cemconcomp.2025.105925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a novel strategy for carbon capture and utilization by incorporating CO2 into foams to develop CO2 foam concrete (CFC) with high performance. A conceptual design approach for CFC was first proposed by incorporating tailor-made CO2 foam bubbles into an optimized cement-based paste. The engineered CO2 foam exhibited fine size and good stability, but increasing CO2 concentration decreased stability. Then, the CO2 foam was used to fabricate CFC with high strength (about twice that of normal foam concrete at a similar density), excellent durability (comparable to normal concrete), and low thermal conductivity. Moreover, it was demonstrated that CO2 foam induced positive internal carbonation effects to further enhance the CFC performance. These effects included promoting cement hydration efficiency and generating CaCO3 on the foam wall for strength enhancement. Also, the rational use of CO2 foams optimized the CFC pore structures, including reducing porosity, refining pore size, and improving pore uniformity. The CFC exhibited exceptional carbon capture, sequestering 87 kg of CO2 per m3 of concrete by internal and external carbonations (active carbon reduction), and could reduce electricity consumption and the corresponding carbon emissions (indirect carbon reduction). This innovative material offers a promising pathway towards sustainable construction and carbon neutrality.