Carbon capture and storage CO2 foam concrete towards higher performance: Design, preparation and characteristics

Dingqiang Fan, Jian-Xin Lu, Xue-Sen Lv, Takafumi Noguchi, Rui Yu, Chi Sun Poon
{"title":"Carbon capture and storage CO2 foam concrete towards higher performance: Design, preparation and characteristics","authors":"Dingqiang Fan, Jian-Xin Lu, Xue-Sen Lv, Takafumi Noguchi, Rui Yu, Chi Sun Poon","doi":"10.1016/j.cemconcomp.2025.105925","DOIUrl":null,"url":null,"abstract":"This study introduces a novel strategy for carbon capture and utilization by incorporating CO<sub>2</sub> into foams to develop CO<sub>2</sub> foam concrete (CFC) with high performance. A conceptual design approach for CFC was first proposed by incorporating tailor-made CO<sub>2</sub> foam bubbles into an optimized cement-based paste. The engineered CO<sub>2</sub> foam exhibited fine size and good stability, but increasing CO<sub>2</sub> concentration decreased stability. Then, the CO<sub>2</sub> foam was used to fabricate CFC with high strength (about twice that of normal foam concrete at a similar density), excellent durability (comparable to normal concrete), and low thermal conductivity. Moreover, it was demonstrated that CO<sub>2</sub> foam induced positive internal carbonation effects to further enhance the CFC performance. These effects included promoting cement hydration efficiency and generating CaCO<sub>3</sub> on the foam wall for strength enhancement. Also, the rational use of CO<sub>2</sub> foams optimized the CFC pore structures, including reducing porosity, refining pore size, and improving pore uniformity. The CFC exhibited exceptional carbon capture, sequestering 87 kg of CO<sub>2</sub> per m<sup>3</sup> of concrete by internal and external carbonations (active carbon reduction), and could reduce electricity consumption and the corresponding carbon emissions (indirect carbon reduction). This innovative material offers a promising pathway towards sustainable construction and carbon neutrality.","PeriodicalId":519419,"journal":{"name":"Cement and Concrete Composites","volume":"203 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cemconcomp.2025.105925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel strategy for carbon capture and utilization by incorporating CO2 into foams to develop CO2 foam concrete (CFC) with high performance. A conceptual design approach for CFC was first proposed by incorporating tailor-made CO2 foam bubbles into an optimized cement-based paste. The engineered CO2 foam exhibited fine size and good stability, but increasing CO2 concentration decreased stability. Then, the CO2 foam was used to fabricate CFC with high strength (about twice that of normal foam concrete at a similar density), excellent durability (comparable to normal concrete), and low thermal conductivity. Moreover, it was demonstrated that CO2 foam induced positive internal carbonation effects to further enhance the CFC performance. These effects included promoting cement hydration efficiency and generating CaCO3 on the foam wall for strength enhancement. Also, the rational use of CO2 foams optimized the CFC pore structures, including reducing porosity, refining pore size, and improving pore uniformity. The CFC exhibited exceptional carbon capture, sequestering 87 kg of CO2 per m3 of concrete by internal and external carbonations (active carbon reduction), and could reduce electricity consumption and the corresponding carbon emissions (indirect carbon reduction). This innovative material offers a promising pathway towards sustainable construction and carbon neutrality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights into the synergistic action of initial hydration and subsequent carbonation of Portland cement Porous biochar for improving the CO2 uptake capacities and kinetics of concrete Microstructure transformation of MCM-41 modified cement paste subjected to thermal load and modelling of its pore size distribution New insights into the interaction between seawater and CO2-activated calcium silicate composites Mechanical Performance Enhancement of UHPC Via ITZ Improvement Using Graphene Oxide-Coated Steel Fibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1