Combined intercalation and space-charge mechanism enabled high-capacity, ultrafast and long-lifespan sodium-ion storage for chalcogenide anodes†

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2025-01-07 DOI:10.1039/D4EE03217A
Feilong Pan, Zhao Li, Shiyu Yao, Jingyi Liu, Zhixuan Wei, Xiao Chen, Yu Xie and Fei Du
{"title":"Combined intercalation and space-charge mechanism enabled high-capacity, ultrafast and long-lifespan sodium-ion storage for chalcogenide anodes†","authors":"Feilong Pan, Zhao Li, Shiyu Yao, Jingyi Liu, Zhixuan Wei, Xiao Chen, Yu Xie and Fei Du","doi":"10.1039/D4EE03217A","DOIUrl":null,"url":null,"abstract":"<p >The increasing demand for advanced battery redox chemistry, surpassing intercalation, conversion, and alloying processes, is pivotal in driving the rapid progress of next-generation rechargeable batteries. Herein, we discover a new ionic storage mechanism combining intercalation and space-charging chemistry in the transition metal dichalcogenides (TMDs) of group IV and V elements (specifically Ti, Nb, and Ta). Taking NbS<small><sub>2</sub></small> as an example, a new ternary intercalation compound Cu<small><sub>0.43</sub></small>DME<small><sub>0.12</sub></small>NbS<small><sub>2</sub></small> is spontaneously formed through a Cu<small><sup>+</sup></small>–ether co-intercalation process with Cu current collectors in ether-based electrolytes. Subsequently, Na<small><sup>+</sup></small> ions can reversibly (de)intercalate into Cu<small><sub>0.43</sub></small>DME<small><sub>0.12</sub></small>NbS<small><sub>2</sub></small> with limited volume expansion, and Na<small><sup>+</sup></small> can adsorb on the surface of <em>in situ</em> electrochemically-induced Cu nanoparticles with fast kinetics and extra storage. Such synergistic processes enable a high specific capacity of 705 mA h g<small><sup>−1</sup></small>, surpassing its theoretical limit, a superior rate capability of 116 mA h g<small><sup>−1</sup></small> at 75 A g<small><sup>−1</sup></small>, and an impressive cycle longevity of over 1 year. Combined with Na<small><sub>3</sub></small>V<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small> (NVP), the full cell demonstrates an exceptional power density of 17 453 W kg<small><sup>−1</sup></small>. The study paves the way for designing functional electrode materials for high-power and long-lifespan batteries.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 4","pages":" 1856-1866"},"PeriodicalIF":32.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d4ee03217a","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for advanced battery redox chemistry, surpassing intercalation, conversion, and alloying processes, is pivotal in driving the rapid progress of next-generation rechargeable batteries. Herein, we discover a new ionic storage mechanism combining intercalation and space-charging chemistry in the transition metal dichalcogenides (TMDs) of group IV and V elements (specifically Ti, Nb, and Ta). Taking NbS2 as an example, a new ternary intercalation compound Cu0.43DME0.12NbS2 is spontaneously formed through a Cu+–ether co-intercalation process with Cu current collectors in ether-based electrolytes. Subsequently, Na+ ions can reversibly (de)intercalate into Cu0.43DME0.12NbS2 with limited volume expansion, and Na+ can adsorb on the surface of in situ electrochemically-induced Cu nanoparticles with fast kinetics and extra storage. Such synergistic processes enable a high specific capacity of 705 mA h g−1, surpassing its theoretical limit, a superior rate capability of 116 mA h g−1 at 75 A g−1, and an impressive cycle longevity of over 1 year. Combined with Na3V2(PO4)3 (NVP), the full cell demonstrates an exceptional power density of 17 453 W kg−1. The study paves the way for designing functional electrode materials for high-power and long-lifespan batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌入和空间电荷相结合的机制实现了硫族化物阳极的高容量、超快和长寿命的钠离子存储
对先进电池氧化还原化学的需求日益增长,超越了插入、转换和合金化过程,是推动下一代可充电电池快速发展的关键。本文在IV族和V族元素(特别是Ti、Nb和Ta)的过渡金属二硫族化合物(TMDs)中发现了一种新的离子嵌入和空间充电化学结合的离子储存机制。以NbS2为例,在醚基电解质中,通过Cu+-醚共插过程,与Cu集流剂自发形成了新型三元插层化合物Cu0.43DME0.12NbS2。随后,Na+离子以有限的体积膨胀可逆地插入Cu0.43DME0.12NbS2中,并且Na+可以吸附在原位电化学诱导的Cu纳米颗粒表面,具有快速的动力学和额外的存储能力。这种协同过程可实现705 mAh g-1的高比容量,超过其理论极限,在75 a g-1时具有116 mAh g-1的优越倍率能力,并且循环寿命超过1年。与Na3V2(PO4)3 (NVP)相结合,整个电池的功率密度达到17453 W kg-1。该研究为设计大功率长寿命电池的功能电极材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
“Head Surgery” of Polycyclic o-Quinones with Cyanated Aromatic Rings towards High Electron Mobility Acceptors Enable 19.6% Additive-Free Binary Organic Solar Cells Self-powered electrochemical synthesis of hydrogen peroxide from air and lignin Targeted Deflecting Zn2+ Migration Trajectory by Piezomagnetic Effect to Enable Horizontal Zn Deposition Anode-Free Sodium Metal Batteries: Optimisation of Electrolytes and Interphases Industrially viable formate production with 50% lower CO2 emissions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1