Synergistically tailoring Kongming-lock morphology and Li+/Ni2+ intermixing to achieve ultrahigh-volumetric-energy-density layered Li-rich oxide cathodes

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2025-02-01 DOI:10.1016/j.ensm.2025.104019
Chenxing Yang , Yuefeng Su , Wen Su , Siyuan Ma , Xinyu Zhu , Shaobo Wu , Yongjian Li , Lai Chen , Duanyun Cao , Meng Wang , Qing Huang , Yibiao Guan , Feng Wu , Ning Li
{"title":"Synergistically tailoring Kongming-lock morphology and Li+/Ni2+ intermixing to achieve ultrahigh-volumetric-energy-density layered Li-rich oxide cathodes","authors":"Chenxing Yang ,&nbsp;Yuefeng Su ,&nbsp;Wen Su ,&nbsp;Siyuan Ma ,&nbsp;Xinyu Zhu ,&nbsp;Shaobo Wu ,&nbsp;Yongjian Li ,&nbsp;Lai Chen ,&nbsp;Duanyun Cao ,&nbsp;Meng Wang ,&nbsp;Qing Huang ,&nbsp;Yibiao Guan ,&nbsp;Feng Wu ,&nbsp;Ning Li","doi":"10.1016/j.ensm.2025.104019","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid growth of energy storage systems demands higher-performance lithium-ion batteries (LIBs). However, state-of-the-art polycrystalline (PC) LIB cathodes struggle with low compaction density, limiting their use in volume-constrained applications. While single-crystal (SC) materials such as LiCoO<sub>2</sub> suffer from low gravimetric energy density. Inspired by the traditional Chinese puzzle, we propose a lithium-rich manganese-based (LMR) cathode with a Kongming lock (KML)-like morphology that optimally regulates Li⁺/Ni<sup>2+</sup> intermixing. Cross-sectional scanning electron microscopy (SEM) confirms enhanced compaction density contributed by the micron-sized primary particles. High-resolution transmission electron microscopy (HRTEM) then shows Li⁺ diffusion-favorable {010} planes on the secondary particle surfaces, improving Li⁺ transport. As a result, electrochemical testing demonstrates an initial discharge capacity of 253 mAh g<sup>-1</sup>, with 96.3 % capacity retention after 100 cycles at 0.1C, and an ultra-high volumetric energy density of approximately 3050 Wh L<sup>-1</sup>, surpassing that of SC-LiCoO<sub>2</sub>. Synchrotron-based characterizations, combined with wide-angle X-ray scattering (WAXS), density functional theory (DFT), and finite element analysis, confirm the local structural, crystalline, and morphological stability of KML. This study underscores the importance of morphology design in cathode materials and advances the development of high gravimetric and volumetric energy density LMR cathodes for next-generation LIBs.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"75 ","pages":"Article 104019"},"PeriodicalIF":18.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725000200","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid growth of energy storage systems demands higher-performance lithium-ion batteries (LIBs). However, state-of-the-art polycrystalline (PC) LIB cathodes struggle with low compaction density, limiting their use in volume-constrained applications. While single-crystal (SC) materials such as LiCoO2 suffer from low gravimetric energy density. Inspired by the traditional Chinese puzzle, we propose a lithium-rich manganese-based (LMR) cathode with a Kongming lock (KML)-like morphology that optimally regulates Li⁺/Ni2+ intermixing. Cross-sectional scanning electron microscopy (SEM) confirms enhanced compaction density contributed by the micron-sized primary particles. High-resolution transmission electron microscopy (HRTEM) then shows Li⁺ diffusion-favorable {010} planes on the secondary particle surfaces, improving Li⁺ transport. As a result, electrochemical testing demonstrates an initial discharge capacity of 253 mAh g-1, with 96.3 % capacity retention after 100 cycles at 0.1C, and an ultra-high volumetric energy density of approximately 3050 Wh L-1, surpassing that of SC-LiCoO2. Synchrotron-based characterizations, combined with wide-angle X-ray scattering (WAXS), density functional theory (DFT), and finite element analysis, confirm the local structural, crystalline, and morphological stability of KML. This study underscores the importance of morphology design in cathode materials and advances the development of high gravimetric and volumetric energy density LMR cathodes for next-generation LIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协同调整孔明锁形态和Li+/Ni2+混合,实现超高体积能量密度层状富锂氧化物阴极
储能系统的快速发展对高性能锂离子电池提出了更高的要求。然而,最先进的多晶(PC) LIB阴极与低压实密度作斗争,限制了它们在体积受限应用中的使用。而单晶(SC)材料,如LiCoO2,则存在较低的重力能量密度。受中国传统难题的启发,我们提出了一种富锂锰基(LMR)阴极,具有孔明锁(KML)样的形态,可以最佳地调节Li + /Ni2+的混合。横断面扫描电子显微镜(SEM)证实了微米级初级颗粒增强的压实密度。然后,高分辨率透射电子显微镜(HRTEM)在二次粒子表面显示出Li⁺有利于扩散的{01平面,从而改善了Li⁺的传输。电化学测试结果表明,该材料的初始放电容量为253 mAh g-1,在0.1C下循环100次后容量保持率为96.3%,体积能量密度约为3050 Wh L-1,超过SC-LiCoO2。基于同步加速器的表征,结合广角x射线散射(WAXS)、密度泛函理论(DFT)和有限元分析,证实了KML的局部结构、晶体和形态稳定性。这项研究强调了阴极材料形态设计的重要性,并推动了下一代锂离子电池高重量和体积能量密度LMR阴极的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Supercapacitor Safety: Temperature Driven Instability and Failure of Electrochemical Double Layer Capacitors Corrigendum to Impedance spectroscopy applied to lithium battery materials: Good practices in measurements and analyses Energy Storage Materials Volume 69, May 2024, 103413 Manganese vacancy motivated structural disorder-to-order transformation to boost fast-charging and long-lasting sodium-ion battery P2-type layered cathode Spatial reinforced cascade catalysts towards optimization of Polysulfide conversion kinetics in Lithium Sulfur batteries Bio-inspired biomass hydrogel interface with ion-selective responsive sieving mechanism for corrosion-resistant and dendrite-free zinc-iodine batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1