Xiaodi Zhao, Luyao Li, Saiwei Zhang, Xiaohua Fu, Li Xie, Lei Wang
{"title":"Efficient chemoautotrophic carbon fixation in controlled systems: Influencing factors, regulatory strategies and application prospects","authors":"Xiaodi Zhao, Luyao Li, Saiwei Zhang, Xiaohua Fu, Li Xie, Lei Wang","doi":"10.1080/10643389.2024.2449328","DOIUrl":null,"url":null,"abstract":"Biological carbon fixation is essential to the Earth’s carbon cycle and serves as an effective means of converting CO<sub>2</sub> and managing carbon emissions. Chemoautotrophic microorganisms, known for their unique metabolic strategies and environmental adaptability, play a significant role in this process. They can convert CO<sub>2</sub> into valuable organic products, addressing the otherwise limited use of CO<sub>2</sub>. However, the potential of chemoautotrophic microorganisms for biological carbon fixation in controlled environments has not been fully explored. This review aims to evaluate the current state of research on the carbon fixation capabilities of chemoautotrophic microorganisms in artificially controlled system. It examines the factors affecting bacterial growth and expounds optimization strategies one by one to enhance biological carbon fixation efficiency. Furthermore, the review details the applications of chemoautotrophs cultivated in controlled systems, which include increasing biological productivity in natural habitats, reducing carbon emissions in specific scenarios, and producing high-value byproducts. The discussion highlights both the advantages and challenges of these applications, providing critical insights into the regulation and practical use of chemoautotrophic carbon fixation technology.","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"80 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2024.2449328","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Biological carbon fixation is essential to the Earth’s carbon cycle and serves as an effective means of converting CO2 and managing carbon emissions. Chemoautotrophic microorganisms, known for their unique metabolic strategies and environmental adaptability, play a significant role in this process. They can convert CO2 into valuable organic products, addressing the otherwise limited use of CO2. However, the potential of chemoautotrophic microorganisms for biological carbon fixation in controlled environments has not been fully explored. This review aims to evaluate the current state of research on the carbon fixation capabilities of chemoautotrophic microorganisms in artificially controlled system. It examines the factors affecting bacterial growth and expounds optimization strategies one by one to enhance biological carbon fixation efficiency. Furthermore, the review details the applications of chemoautotrophs cultivated in controlled systems, which include increasing biological productivity in natural habitats, reducing carbon emissions in specific scenarios, and producing high-value byproducts. The discussion highlights both the advantages and challenges of these applications, providing critical insights into the regulation and practical use of chemoautotrophic carbon fixation technology.
期刊介绍:
Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics.
Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges.
The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.