Efficient chemoautotrophic carbon fixation in controlled systems: Influencing factors, regulatory strategies and application prospects

IF 11.4 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Critical Reviews in Environmental Science and Technology Pub Date : 2025-01-03 DOI:10.1080/10643389.2024.2449328
Xiaodi Zhao, Luyao Li, Saiwei Zhang, Xiaohua Fu, Li Xie, Lei Wang
{"title":"Efficient chemoautotrophic carbon fixation in controlled systems: Influencing factors, regulatory strategies and application prospects","authors":"Xiaodi Zhao, Luyao Li, Saiwei Zhang, Xiaohua Fu, Li Xie, Lei Wang","doi":"10.1080/10643389.2024.2449328","DOIUrl":null,"url":null,"abstract":"Biological carbon fixation is essential to the Earth’s carbon cycle and serves as an effective means of converting CO<sub>2</sub> and managing carbon emissions. Chemoautotrophic microorganisms, known for their unique metabolic strategies and environmental adaptability, play a significant role in this process. They can convert CO<sub>2</sub> into valuable organic products, addressing the otherwise limited use of CO<sub>2</sub>. However, the potential of chemoautotrophic microorganisms for biological carbon fixation in controlled environments has not been fully explored. This review aims to evaluate the current state of research on the carbon fixation capabilities of chemoautotrophic microorganisms in artificially controlled system. It examines the factors affecting bacterial growth and expounds optimization strategies one by one to enhance biological carbon fixation efficiency. Furthermore, the review details the applications of chemoautotrophs cultivated in controlled systems, which include increasing biological productivity in natural habitats, reducing carbon emissions in specific scenarios, and producing high-value byproducts. The discussion highlights both the advantages and challenges of these applications, providing critical insights into the regulation and practical use of chemoautotrophic carbon fixation technology.","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"80 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2024.2449328","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Biological carbon fixation is essential to the Earth’s carbon cycle and serves as an effective means of converting CO2 and managing carbon emissions. Chemoautotrophic microorganisms, known for their unique metabolic strategies and environmental adaptability, play a significant role in this process. They can convert CO2 into valuable organic products, addressing the otherwise limited use of CO2. However, the potential of chemoautotrophic microorganisms for biological carbon fixation in controlled environments has not been fully explored. This review aims to evaluate the current state of research on the carbon fixation capabilities of chemoautotrophic microorganisms in artificially controlled system. It examines the factors affecting bacterial growth and expounds optimization strategies one by one to enhance biological carbon fixation efficiency. Furthermore, the review details the applications of chemoautotrophs cultivated in controlled systems, which include increasing biological productivity in natural habitats, reducing carbon emissions in specific scenarios, and producing high-value byproducts. The discussion highlights both the advantages and challenges of these applications, providing critical insights into the regulation and practical use of chemoautotrophic carbon fixation technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可控系统中高效化学自养固碳:影响因素、调控策略及应用前景
生物碳固定对地球的碳循环至关重要,是转化二氧化碳和管理碳排放的有效手段。化学自养微生物以其独特的代谢策略和环境适应性在这一过程中发挥了重要作用。它们可以将二氧化碳转化为有价值的有机产品,解决了二氧化碳使用有限的问题。然而,化学自养微生物在受控环境中生物固定碳的潜力尚未得到充分探索。本文综述了人工控制系统中化学自养微生物固碳能力的研究现状。考察了影响细菌生长的因素,并逐一阐述了提高生物固碳效率的优化策略。此外,本文还详细介绍了化学自养生物在控制系统中的应用,包括提高自然栖息地的生物生产力,减少特定情况下的碳排放,以及产生高价值副产品。讨论强调了这些应用的优势和挑战,为化学自养碳固定技术的调节和实际应用提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
27.30
自引率
1.60%
发文量
64
审稿时长
2 months
期刊介绍: Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics. Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges. The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.
期刊最新文献
Radiological dose from seafood ingestion; a global summary from 40 years of study Effects of rare earth elements in the aquatic environment: Implications for ecotoxicological testing Secondary organophosphate esters: A review of environmental source, occurrence, and human exposure U(VI) removal on polymer adsorbents: Recent development and future challenges Efficient chemoautotrophic carbon fixation in controlled systems: Influencing factors, regulatory strategies and application prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1