Nitrogenative Degradation of Polystyrene Waste

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-01-08 DOI:10.1021/jacs.4c15500
Ganfei Zeng, Yanming Su, Jianwei Jiang, Zhiliang Huang
{"title":"Nitrogenative Degradation of Polystyrene Waste","authors":"Ganfei Zeng, Yanming Su, Jianwei Jiang, Zhiliang Huang","doi":"10.1021/jacs.4c15500","DOIUrl":null,"url":null,"abstract":"Owing to massive production and poor end-of-life management, plastic waste pollution has become one of the most pressing environmental crises. In response to the mounting crisis, the past several decades have witnessed the development of numerous methods and technologies for plastic recycling. However, most of the current recycling technologies often produce low-quality or low-value products, making it difficult to recover the operating costs. To this end, we report a novel preoxygenation-induced strategy for the nitrogenative degradation of real-life polystyrene plastics into high-value aromatic nitrogen compounds in a cost-effective manner. Thus, expensive and highly demanding benzonitrile as well as benzamide were obtained in up to 74% overall isolated yield from polystyrene waste by using CuBr as the catalyst, O<sub>2</sub> as the oxidant, and CH<sub>3</sub>CN as the nitrogen source. Detailed mechanistic investigations indicate that hydroxyl radicals from O<sub>2</sub> activation play a role in this selective aerobic degradation process. Furthermore, multiple reaction pathways contribute to the formation of benzonitrile and benzamide.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"28 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c15500","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to massive production and poor end-of-life management, plastic waste pollution has become one of the most pressing environmental crises. In response to the mounting crisis, the past several decades have witnessed the development of numerous methods and technologies for plastic recycling. However, most of the current recycling technologies often produce low-quality or low-value products, making it difficult to recover the operating costs. To this end, we report a novel preoxygenation-induced strategy for the nitrogenative degradation of real-life polystyrene plastics into high-value aromatic nitrogen compounds in a cost-effective manner. Thus, expensive and highly demanding benzonitrile as well as benzamide were obtained in up to 74% overall isolated yield from polystyrene waste by using CuBr as the catalyst, O2 as the oxidant, and CH3CN as the nitrogen source. Detailed mechanistic investigations indicate that hydroxyl radicals from O2 activation play a role in this selective aerobic degradation process. Furthermore, multiple reaction pathways contribute to the formation of benzonitrile and benzamide.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚苯乙烯废弃物的氮化降解
由于塑料的大规模生产和报废管理不善,塑料垃圾污染已成为最紧迫的环境危机之一。为了应对日益严重的危机,过去几十年见证了许多塑料回收方法和技术的发展。然而,目前大多数回收技术往往产生低质量或低价值的产品,难以收回运营成本。为此,我们报告了一种新的预氧化诱导策略,以经济有效的方式将现实生活中的聚苯乙烯塑料氮化降解为高价值的芳香族氮化合物。因此,以CuBr为催化剂,O2为氧化剂,CH3CN为氮源,以高达74%的总分离率从聚苯乙烯废料中获得了昂贵且要求很高的苯腈和苯酰胺。详细的机制研究表明,氧活化的羟基自由基在这种选择性好氧降解过程中起作用。此外,多种反应途径有助于苯腈和苯酰胺的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Operando Characterization of Fe in Doped Nix(Fe1–x)OyHz Catalysts for Electrochemical Oxygen Evolution Ultralow Coordination Copper Sites Compartmentalized within Ordered Pores for Highly Efficient Electrosynthesis of n-Propanol from CO2 Atomically Dispersed Co–P Moieties via Direct Thermal Exfoliation for Alkaline Hydrogen Electrosynthesis EPR Characterization of the BlsE Substrate Radical Offers Insight into the Determinants of Reaction Outcome that Distinguish Radical SAM Dioldehydratases from Dehydrogenases Effects of Iron Impurities and Content on Electrochemical Performance and Oxygen Evolution Selectivity of Nickel Catalysts for Ethanol Oxidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1