{"title":"Atomically Dispersed Co–P Moieties via Direct Thermal Exfoliation for Alkaline Hydrogen Electrosynthesis","authors":"Zheng Zhou, Yixin Su, Hao Tan, Yang Wang, Qianwei Huang, Haozhu Wang, Jingyang Wang, Momoji Kubo, Zitao Ni, Yuan Kong, Shenlong Zhao","doi":"10.1021/jacs.4c11788","DOIUrl":null,"url":null,"abstract":"The development of highly active and stable cathodes in alkaline solutions is crucial for promoting the commercialization of anion exchange membrane (AEM) electrolyzers, yet it remains a significant challenge. Herein, we synthesized atomically dispersed CoP<sub>4</sub> moieties (CoP<sub>4</sub>–SSC) immobilized on ultrathin carbon nanosheets via a phosphidation exfoliation strategy at medium temperature. The thermodynamic formation process of the Co–P moieties was elucidated using X-ray absorption spectroscopy (XAS) and theoretical calculations. Remarkably, the resulting CoP<sub>4</sub>–SSC electrocatalyst exhibited outstanding activity for alkaline hydrogen evolution, with a low overpotential of 52 mV at 10 mA cm<sup>–2</sup> and a turnover frequency of up to 23.83 s<sup>–1</sup>. Moreover, the AEM electrolyzer fabricated with CoP<sub>4</sub>–SSC achieved a current density of 1 A cm<sup>–2</sup> under an applied voltage of only 1.94 V, showing negligible degradation after 500 h of continuous electrocatalysis. A series of operando characterizations and density functional theory calculations revealed that the atomically dispersed Co–P moieties formed a nanointerface of [P-*H···H<sub>2</sub>O*-Co], which facilitates water dissociation during the Volmer–Heyrovsky pathway.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"34 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11788","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of highly active and stable cathodes in alkaline solutions is crucial for promoting the commercialization of anion exchange membrane (AEM) electrolyzers, yet it remains a significant challenge. Herein, we synthesized atomically dispersed CoP4 moieties (CoP4–SSC) immobilized on ultrathin carbon nanosheets via a phosphidation exfoliation strategy at medium temperature. The thermodynamic formation process of the Co–P moieties was elucidated using X-ray absorption spectroscopy (XAS) and theoretical calculations. Remarkably, the resulting CoP4–SSC electrocatalyst exhibited outstanding activity for alkaline hydrogen evolution, with a low overpotential of 52 mV at 10 mA cm–2 and a turnover frequency of up to 23.83 s–1. Moreover, the AEM electrolyzer fabricated with CoP4–SSC achieved a current density of 1 A cm–2 under an applied voltage of only 1.94 V, showing negligible degradation after 500 h of continuous electrocatalysis. A series of operando characterizations and density functional theory calculations revealed that the atomically dispersed Co–P moieties formed a nanointerface of [P-*H···H2O*-Co], which facilitates water dissociation during the Volmer–Heyrovsky pathway.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.