Photo-Driven Ammonia Synthesis via a Proton-Mediated Photoelectrochemical Device

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-07 DOI:10.1002/anie.202422869
Wan Lin, Jiajie Chen, Xiang Zhang, Jing Lin, Fuwen Lin, ShenXia Huang, Prof. Yaobing Wang
{"title":"Photo-Driven Ammonia Synthesis via a Proton-Mediated Photoelectrochemical Device","authors":"Wan Lin,&nbsp;Jiajie Chen,&nbsp;Xiang Zhang,&nbsp;Jing Lin,&nbsp;Fuwen Lin,&nbsp;ShenXia Huang,&nbsp;Prof. Yaobing Wang","doi":"10.1002/anie.202422869","DOIUrl":null,"url":null,"abstract":"<p>N<sub>2</sub> reduction reaction (NRR) by light is an energy-saving and sustainable ammonia (NH<sub>3</sub>) synthesis technology. However, it faces significant challenges, including high energy barriers of N<sub>2</sub> activation and unclear catalytic active sites. Herein, we propose a strategy of photo-driven ammonia synthesis via a proton-mediated photoelectrochemical device. We used redox-catalysis covalent organic framework (COF), with a redox site (−C=O) for H<sup>+</sup> reversible storage and a catalytic site (porphyrin Au) for NRR. In the proton-mediated photoelectrochemical device, the COF can successfully store e<sup>−</sup> and H<sup>+</sup> generated by hydrogen oxidation reaction, forming COF−H. Then, these stored e<sup>−</sup> and H<sup>+</sup> can be used for photo-driven NRR (108.97 umol g<sup>−1</sup>) under low proton concentration promoted by the H-bond network formed between −OH in COF−H and N<sub>2</sub> on Au, which enabled N<sub>2</sub> hydrogenation and NH<sub>3</sub> production, establishing basis for advancing artificial photosynthesis and enhancing ammonia synthesis technology.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 8","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202422869","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

N2 reduction reaction (NRR) by light is an energy-saving and sustainable ammonia (NH3) synthesis technology. However, it faces significant challenges, including high energy barriers of N2 activation and unclear catalytic active sites. Herein, we propose a strategy of photo-driven ammonia synthesis via a proton-mediated photoelectrochemical device. We used redox-catalysis covalent organic framework (COF), with a redox site (−C=O) for H+ reversible storage and a catalytic site (porphyrin Au) for NRR. In the proton-mediated photoelectrochemical device, the COF can successfully store e and H+ generated by hydrogen oxidation reaction, forming COF−H. Then, these stored e and H+ can be used for photo-driven NRR (108.97 umol g−1) under low proton concentration promoted by the H-bond network formed between −OH in COF−H and N2 on Au, which enabled N2 hydrogenation and NH3 production, establishing basis for advancing artificial photosynthesis and enhancing ammonia synthesis technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于质子介导的光电化学装置的光驱动氨合成
光还原反应(NRR)是一种节能、可持续的氨合成技术。然而,它面临着巨大的挑战,包括N2活化的高能量垒和催化活性位点不明确。在此,我们提出了一种通过质子介导的光电化学装置进行光驱动氨合成的策略。我们使用氧化还原催化共价有机框架(COF),其中一个氧化还原位点(‐C=O)用于H+可逆存储,一个催化位点(卟啉Au)用于NRR。在质子介导的光电化学装置中,COF可以成功地储存氢氧化反应产生的e +和H+,形成COF - H。然后,这些储存的e -和H+可以在低质子浓度下用于光驱动NRR (108.97 μ mol g - 1),在COF - H中- OH与Au上的N2之间形成的氢键网络促进了N2加氢和NH3的产生,为推进人工光合作用和提高合成氨技术奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
La3ZrGa5O14: Band-inversion Strategy in Topology-Protected Octahedron for Large Nonlinear Response and Wide Bandgap High- Density Post-Perovskite for Ultra-Sensitive Hard X-ray Detection Synergistic Catalysts for Lithium-Sulfur Batteries: Ni Single Atom and MoC Nanoclusters Composites Engineered Polymeric Microspheres with Synergistic Hydrogen-Bonding Nanotraps and Multi-site adsorption for Ultrafast Herbicide Decontamination Molybdenum-catalyzed ammonia synthesis by using zero-valent metal powder with alcohols or water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1