Su Jin Yum, Seon Yeong Yu, Seung Min Kim, Hee Gon Jeong
{"title":"Antibiotic Resistance Genes and Microbiota in Brassica oleracea var. acephala Cultivated in South Korea: Potential for Resistance Transmission","authors":"Su Jin Yum, Seon Yeong Yu, Seung Min Kim, Hee Gon Jeong","doi":"10.1021/acs.jafc.4c11161","DOIUrl":null,"url":null,"abstract":"Antimicrobial resistance (AMR) poses a critical global public health challenge. This study investigates the microbiome of <i>Brassica oleracea</i> var. <i>acephala</i> (kale) to evaluate the role of food production systems, particularly plant-derived foods, in AMR dissemination. Using 16S rRNA gene sequencing and metagenomic shotgun sequencing, we analyzed microbial diversity and antimicrobial resistance genes (ARGs) in kale samples. Results showed significant regional differences in microbiota composition and ARG distribution, with traditional fertilizer use linked to higher ARG prevalence in coliform bacteria compared to farms using other fertilization methods. Additionally, we confirmed ARG transfer potential by <i>Klebsiella pneumoniae</i> within coliform populations. Storage conditions notably affected microbial dynamics, with higher temperatures promoting <i>K. pneumoniae</i> growth in washed samples. These findings revealed the importance of AMR research in plant-derived foods and highlight the need for improved agricultural practices to mitigate the risks associated with high ARG abundance in coliform bacteria.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"39 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c11161","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial resistance (AMR) poses a critical global public health challenge. This study investigates the microbiome of Brassica oleracea var. acephala (kale) to evaluate the role of food production systems, particularly plant-derived foods, in AMR dissemination. Using 16S rRNA gene sequencing and metagenomic shotgun sequencing, we analyzed microbial diversity and antimicrobial resistance genes (ARGs) in kale samples. Results showed significant regional differences in microbiota composition and ARG distribution, with traditional fertilizer use linked to higher ARG prevalence in coliform bacteria compared to farms using other fertilization methods. Additionally, we confirmed ARG transfer potential by Klebsiella pneumoniae within coliform populations. Storage conditions notably affected microbial dynamics, with higher temperatures promoting K. pneumoniae growth in washed samples. These findings revealed the importance of AMR research in plant-derived foods and highlight the need for improved agricultural practices to mitigate the risks associated with high ARG abundance in coliform bacteria.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.