Xiaolong Feng, Lu Zhang, Xiaofeng Feng, Jiaxue You, Jiacheng Pi, Hanqing Zeng, Depeng Chu, Chengzhi Xue, Ke Zhao, Shilong Jia, Pengda Tong, Zhiwen Jin, Yucheng Liu, Alex K.-Y. Jen, Shengzhong Frank Liu
{"title":"Ion Migration Suppression via Doping Multivalent Cations in Perovskite for High Thermal Stability X-ray Detectors","authors":"Xiaolong Feng, Lu Zhang, Xiaofeng Feng, Jiaxue You, Jiacheng Pi, Hanqing Zeng, Depeng Chu, Chengzhi Xue, Ke Zhao, Shilong Jia, Pengda Tong, Zhiwen Jin, Yucheng Liu, Alex K.-Y. Jen, Shengzhong Frank Liu","doi":"10.1021/acsenergylett.4c03201","DOIUrl":null,"url":null,"abstract":"CsPb<sub>2</sub>Br<sub>5</sub> single crystals (SCs) are promising for X-ray detection due to their high absorption, excellent photoelectric properties, and stability. However, thermal stress in high-temperature environments accelerates ion migration within perovskite structures, leading to degraded performance. In this study, we investigate the effects of Cr<sup>3+</sup> doping, which induces lattice contraction and distortion due to its small ionic radius and strong electrophilic properties. This increases the formation energy of Br vacancies and activation energy for ion migration, enhancing the crystal’s resistance to thermal stress. As a result, Cr-doped CsPb<sub>2</sub>Br<sub>5</sub> exhibits a high μτ value of 5.46 × 10<sup>–3</sup> cm<sup>2</sup> V<sup>–1</sup>, a lower temperature coefficient of resistance (−1.58 × 10<sup>–</sup><sup>2</sup> °C<sup>–</sup><sup>1</sup>), and excellent ion migration resistance at 70 °C. These improvements lead to a high sensitivity of 7183.5 μC Gy<sub>air</sub><sup>–</sup><sup>1</sup> cm<sup>–</sup><sup>2</sup> and a low detection dose rate of 11.5 nGy<sub>air</sub> s<sup>–</sup><sup>1</sup>, with stable performance in X-ray imaging at elevated temperatures, making it suitable for complex environments.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"77 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03201","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
CsPb2Br5 single crystals (SCs) are promising for X-ray detection due to their high absorption, excellent photoelectric properties, and stability. However, thermal stress in high-temperature environments accelerates ion migration within perovskite structures, leading to degraded performance. In this study, we investigate the effects of Cr3+ doping, which induces lattice contraction and distortion due to its small ionic radius and strong electrophilic properties. This increases the formation energy of Br vacancies and activation energy for ion migration, enhancing the crystal’s resistance to thermal stress. As a result, Cr-doped CsPb2Br5 exhibits a high μτ value of 5.46 × 10–3 cm2 V–1, a lower temperature coefficient of resistance (−1.58 × 10–2 °C–1), and excellent ion migration resistance at 70 °C. These improvements lead to a high sensitivity of 7183.5 μC Gyair–1 cm–2 and a low detection dose rate of 11.5 nGyair s–1, with stable performance in X-ray imaging at elevated temperatures, making it suitable for complex environments.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.