Developing machine-learning-based amyloidogenicity predictors with Cross-Beta DB

IF 11.1 1区 医学 Q1 CLINICAL NEUROLOGY Alzheimer's & Dementia Pub Date : 2025-01-08 DOI:10.1002/alz.14510
Valentin Gonay, Michael P. Dunne, Javier Caceres-Delpiano, Andrey V. Kajava
{"title":"Developing machine-learning-based amyloidogenicity predictors with Cross-Beta DB","authors":"Valentin Gonay,&nbsp;Michael P. Dunne,&nbsp;Javier Caceres-Delpiano,&nbsp;Andrey V. Kajava","doi":"10.1002/alz.14510","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> INTRODUCTION</h3>\n \n <p>The importance of protein amyloidogenesis, associated with various diseases and functional roles, has driven the creation of computational predictors of amyloidogenicity. The accuracy of these predictors, particularly those utilizing artificial intelligence technologies, heavily depends on the quality of the data.</p>\n </section>\n \n <section>\n \n <h3> METHODS</h3>\n \n <p>We built Cross-Beta DB, a database containing high-quality data on known cross-β amyloids formed under natural conditions. We used it to train and benchmark several machine-learning (ML) algorithms to predict amyloid-forming potential of proteins.</p>\n </section>\n \n <section>\n \n <h3> RESULTS</h3>\n \n <p>We developed the Cross-Beta predictor using an Extra trees ML algorithm, which outperforms other amyloid predictors with the highest F1 score (0.852) and accuracy (0.844) compared to existing methods.</p>\n </section>\n \n <section>\n \n <h3> DISCUSSION</h3>\n \n <p>The development of the Cross-Beta DB database and a new ML-based Cross-Beta predictor may enable the creation of personalized risk profiles for neurodegenerative diseases and other amyloidoses—especially as genome sequencing becomes more affordable.</p>\n </section>\n \n <section>\n \n <h3> Highlights</h3>\n \n <div>\n <ul>\n \n <li>Accuracy of ML-based predictors depends on the quality of training data</li>\n \n <li>We built Cross-Beta DB, a database of high-quality data on naturally-occurring amyloids</li>\n \n <li>Using this data, we developed an amyloid predictor that outperforms other predictors</li>\n \n <li>This computational tool enables the creation of risk profiles for neurodegenerative diseases</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":7471,"journal":{"name":"Alzheimer's & Dementia","volume":"21 2","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/alz.14510","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer's & Dementia","FirstCategoryId":"3","ListUrlMain":"https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz.14510","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

INTRODUCTION

The importance of protein amyloidogenesis, associated with various diseases and functional roles, has driven the creation of computational predictors of amyloidogenicity. The accuracy of these predictors, particularly those utilizing artificial intelligence technologies, heavily depends on the quality of the data.

METHODS

We built Cross-Beta DB, a database containing high-quality data on known cross-β amyloids formed under natural conditions. We used it to train and benchmark several machine-learning (ML) algorithms to predict amyloid-forming potential of proteins.

RESULTS

We developed the Cross-Beta predictor using an Extra trees ML algorithm, which outperforms other amyloid predictors with the highest F1 score (0.852) and accuracy (0.844) compared to existing methods.

DISCUSSION

The development of the Cross-Beta DB database and a new ML-based Cross-Beta predictor may enable the creation of personalized risk profiles for neurodegenerative diseases and other amyloidoses—especially as genome sequencing becomes more affordable.

Highlights

  • Accuracy of ML-based predictors depends on the quality of training data
  • We built Cross-Beta DB, a database of high-quality data on naturally-occurring amyloids
  • Using this data, we developed an amyloid predictor that outperforms other predictors
  • This computational tool enables the creation of risk profiles for neurodegenerative diseases

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用Cross - Beta DB开发基于机器学习的淀粉样变性预测因子
蛋白质淀粉样变的重要性,与各种疾病和功能角色相关,已经推动了淀粉样变的计算预测的创建。这些预测器的准确性,特别是那些利用人工智能技术的预测器,在很大程度上取决于数据的质量。方法建立Cross - Beta DB数据库,该数据库包含在自然条件下形成的已知交叉β淀粉样蛋白的高质量数据。我们用它来训练和测试几种机器学习(ML)算法,以预测蛋白质的淀粉样蛋白形成潜力。我们使用Extra trees ML算法开发了Cross - Beta预测器,与现有方法相比,该预测器的F1得分最高(0.852),准确率最高(0.844),优于其他淀粉样蛋白预测器。Cross - Beta数据库的发展和一个新的基于ML的Cross - Beta预测器可能使神经退行性疾病和其他淀粉样变性疾病的个性化风险概况的创建成为可能,特别是随着基因组测序变得更加实惠。我们建立了Cross - Beta DB,这是一个关于自然发生的淀粉样蛋白的高质量数据数据库,利用这些数据,我们开发了一个优于其他预测器的淀粉样蛋白预测器。这个计算工具可以创建神经退行性疾病的风险概况
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Alzheimer's & Dementia
Alzheimer's & Dementia 医学-临床神经学
CiteScore
14.50
自引率
5.00%
发文量
299
审稿时长
3 months
期刊介绍: Alzheimer's & Dementia is a peer-reviewed journal that aims to bridge knowledge gaps in dementia research by covering the entire spectrum, from basic science to clinical trials to social and behavioral investigations. It provides a platform for rapid communication of new findings and ideas, optimal translation of research into practical applications, increasing knowledge across diverse disciplines for early detection, diagnosis, and intervention, and identifying promising new research directions. In July 2008, Alzheimer's & Dementia was accepted for indexing by MEDLINE, recognizing its scientific merit and contribution to Alzheimer's research.
期刊最新文献
PP2A methylesterase, PME‐1, and PP2A methyltransferase, LCMT‐1, control sensitivity to impairments caused by injury‐related oligomeric tau Correction to “ACLY regulates autolysosome acidification through tubulin acetylation‐mediated assembly of V‐ATPase subunits in Alzheimer's disease model mice” Plasma placental growth factor as a susceptibility biomarker for longitudinal cognitive change APOE isoform‐associated tau oligomer polymorphs differ in synaptotoxicity and seeding activity Unraveling the oral microbiome's role in Alzheimer's disease: From pathophysiology to therapeutic potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1