Structure-Guided Discovery of Novel N4-(Substituted Thiazol-2-yl)-N2-(4-Substituted phenyl)pyrimidine-2,4-Diamines as Potent CDK2 and CDK9 Dual Inhibitors with High Oral Bioavailability

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL Journal of Medicinal Chemistry Pub Date : 2025-01-08 DOI:10.1021/acs.jmedchem.4c02441
Bei Zhang, Yanhong Li, Yukang Lin, Ting Wang, Lin Chen, Jianfan Cai, Tangyang Ji, Pengcheng Diao, Yufeng Ma, Yanting Zhang, Wenwei You, Jingkao Chen, Peiliang Zhao
{"title":"Structure-Guided Discovery of Novel N4-(Substituted Thiazol-2-yl)-N2-(4-Substituted phenyl)pyrimidine-2,4-Diamines as Potent CDK2 and CDK9 Dual Inhibitors with High Oral Bioavailability","authors":"Bei Zhang, Yanhong Li, Yukang Lin, Ting Wang, Lin Chen, Jianfan Cai, Tangyang Ji, Pengcheng Diao, Yufeng Ma, Yanting Zhang, Wenwei You, Jingkao Chen, Peiliang Zhao","doi":"10.1021/acs.jmedchem.4c02441","DOIUrl":null,"url":null,"abstract":"CDK2 and CDK9 play pivotal roles in cell cycle progression and gene transcription, respectively, making them promising targets for cancer treatment. Herein, we discovered a series of <i>N</i><sup>4</sup>-(substituted thiazol-2-yl)-<i>N</i><sup>2</sup>-(4-substituted phenyl)pyrimidine-2,4-diamines as highly potent CDK2/9 dual inhibitors. Especially, compound <b>20a</b> significantly inhibited CDK2 (IC<sub>50</sub> = 0.004 μM) and CDK9 (IC<sub>50</sub> = 0.009 μM), achieving a 1000- and 2800-fold improvement over lead compound <b>11</b>, and demonstrating broad antitumor efficacy. Mechanistic studies indicated that <b>20a</b> effectively and simultaneously suppressed CDK2 and CDK9 proteins in the HCT116 cell line, leading to G2/M cell cycle arrest and cell apoptosis by regulating cell cycle- and apoptosis-related protein expression. Most importantly, <b>20a</b> exhibited 86.7% oral bioavailability in rats and effectively inhibited tumor growth in HCT116 xenograft and C6 glioma rat models without significant toxicity. Overall, these observations clearly confirmed the promising therapeutic strategy of CDK2/9 dual inhibitors and provided a novel potent candidate for cancer therapy.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"22 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02441","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

CDK2 and CDK9 play pivotal roles in cell cycle progression and gene transcription, respectively, making them promising targets for cancer treatment. Herein, we discovered a series of N4-(substituted thiazol-2-yl)-N2-(4-substituted phenyl)pyrimidine-2,4-diamines as highly potent CDK2/9 dual inhibitors. Especially, compound 20a significantly inhibited CDK2 (IC50 = 0.004 μM) and CDK9 (IC50 = 0.009 μM), achieving a 1000- and 2800-fold improvement over lead compound 11, and demonstrating broad antitumor efficacy. Mechanistic studies indicated that 20a effectively and simultaneously suppressed CDK2 and CDK9 proteins in the HCT116 cell line, leading to G2/M cell cycle arrest and cell apoptosis by regulating cell cycle- and apoptosis-related protein expression. Most importantly, 20a exhibited 86.7% oral bioavailability in rats and effectively inhibited tumor growth in HCT116 xenograft and C6 glioma rat models without significant toxicity. Overall, these observations clearly confirmed the promising therapeutic strategy of CDK2/9 dual inhibitors and provided a novel potent candidate for cancer therapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
期刊最新文献
Metabolic Stability and Targeted Delivery of Oligonucleotides: Advancing RNA Therapeutics Beyond The Liver Real-World Applications and Experiences of AI/ML Deployment for Drug Discovery Discovery of INCB159020, an Orally Bioavailable KRAS G12D Inhibitor Structure-Guided Discovery of Novel N4-(Substituted Thiazol-2-yl)-N2-(4-Substituted phenyl)pyrimidine-2,4-Diamines as Potent CDK2 and CDK9 Dual Inhibitors with High Oral Bioavailability Targeted Degradation of HCV Polymerase by GalNAc-Conjugated ApTACs for Pan-Genotypic Antiviral Therapy with High Resistance Barriers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1