Abdelrahman Kamal Hamed, Mohamed Kamel Elshaarawy, Mostafa M. Alsaadawi
{"title":"Stacked-based machine learning to predict the uniaxial compressive strength of concrete materials","authors":"Abdelrahman Kamal Hamed, Mohamed Kamel Elshaarawy, Mostafa M. Alsaadawi","doi":"10.1016/j.compstruc.2025.107644","DOIUrl":null,"url":null,"abstract":"Compressive strength is a key factor in the design and durability of concrete structures. Accurate prediction of compressive strength helps optimize material use and reduce construction costs. This study proposes a novel stacked model for predicting compressive strength, integrating three base models with linear regression. The base models include Artificial Neural Networks, Random Forest, and Extreme Gradient Boosting, while the stacked model uses Linear Regression as the metamodel. A dataset of 1,030 concrete mix samples covering eight critical input parameters, including cement, blast furnace slag, coarse aggregates, fine aggregates, fly ash, water, superplasticizer, and curing days, was used for training and evaluation. The dataset was split into training (80%), validation (10%), and testing (10%) subsets. The models were trained independently, and their predictions were used to develop the stacked model. Among the base models, the Extreme Gradient Boosting model achieved the highest accuracy, with an R<ce:sup loc=\"post\">2</ce:sup> of 0.947 during testing. However, the stacked model outperformed it, attaining an R<ce:sup loc=\"post\">2</ce:sup> of 0.953 in the testing phase. Shapley additive explanations analysis identified curing duration as the most influential factor in compressive strength prediction. A user-friendly graphical interface was developed to facilitate efficient prediction of compressive strength in concrete structures.","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"133 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compstruc.2025.107644","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Compressive strength is a key factor in the design and durability of concrete structures. Accurate prediction of compressive strength helps optimize material use and reduce construction costs. This study proposes a novel stacked model for predicting compressive strength, integrating three base models with linear regression. The base models include Artificial Neural Networks, Random Forest, and Extreme Gradient Boosting, while the stacked model uses Linear Regression as the metamodel. A dataset of 1,030 concrete mix samples covering eight critical input parameters, including cement, blast furnace slag, coarse aggregates, fine aggregates, fly ash, water, superplasticizer, and curing days, was used for training and evaluation. The dataset was split into training (80%), validation (10%), and testing (10%) subsets. The models were trained independently, and their predictions were used to develop the stacked model. Among the base models, the Extreme Gradient Boosting model achieved the highest accuracy, with an R2 of 0.947 during testing. However, the stacked model outperformed it, attaining an R2 of 0.953 in the testing phase. Shapley additive explanations analysis identified curing duration as the most influential factor in compressive strength prediction. A user-friendly graphical interface was developed to facilitate efficient prediction of compressive strength in concrete structures.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.