Plasmon-enhanced Brillouin light scattering spectroscopy for magnetic systems. II. Numerical simulations

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review B Pub Date : 2025-01-07 DOI:10.1103/physrevb.111.014405
Yurii Demydenko, Taras Vasiliev, Khrystyna O. Levchenko, Andrii V. Chumak, Valeri Lozovski
{"title":"Plasmon-enhanced Brillouin light scattering spectroscopy for magnetic systems. II. Numerical simulations","authors":"Yurii Demydenko, Taras Vasiliev, Khrystyna O. Levchenko, Andrii V. Chumak, Valeri Lozovski","doi":"10.1103/physrevb.111.014405","DOIUrl":null,"url":null,"abstract":"Brillouin light scattering (BLS) spectroscopy is a powerful tool for detecting spin waves in magnetic thin films and nanostructures. Despite comprehensive access to spin-wave properties, BLS spectroscopy suffers from the limited wave number of detectable spin waves and the typically relatively low sensitivity. In this paper, we present the results of numerical simulations based on the recently developed analytical model describing plasmon-enhanced BLS. Effective susceptibility is defined for a single plasmonic nanoparticle in the shape of an ellipsoid of rotation, for the sandwiched plasmonic nanoparticles separated by a dielectric spacer, as well as for the array of plasmonic resonators on the surface of a magnetic film. It is shown that the eccentricity of the metal nanoparticles, describing their shape, plays a leading role in enhancing the BLS signal. The optimal conditions for BLS enhancement are numerically defined for gold and silver plasmon systems for photons of different energies. The presented results define the roadmap for the experimental realization of plasmon-enhanced BLS spectroscopy. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"8 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.014405","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Brillouin light scattering (BLS) spectroscopy is a powerful tool for detecting spin waves in magnetic thin films and nanostructures. Despite comprehensive access to spin-wave properties, BLS spectroscopy suffers from the limited wave number of detectable spin waves and the typically relatively low sensitivity. In this paper, we present the results of numerical simulations based on the recently developed analytical model describing plasmon-enhanced BLS. Effective susceptibility is defined for a single plasmonic nanoparticle in the shape of an ellipsoid of rotation, for the sandwiched plasmonic nanoparticles separated by a dielectric spacer, as well as for the array of plasmonic resonators on the surface of a magnetic film. It is shown that the eccentricity of the metal nanoparticles, describing their shape, plays a leading role in enhancing the BLS signal. The optimal conditions for BLS enhancement are numerically defined for gold and silver plasmon systems for photons of different energies. The presented results define the roadmap for the experimental realization of plasmon-enhanced BLS spectroscopy. Published by the American Physical Society 2025
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁系统的等离子体增强布里渊光散射光谱。2。数值模拟
布里渊光散射(BLS)光谱是探测磁性薄膜和纳米结构中自旋波的有力工具。尽管可以全面获得自旋波特性,但BLS光谱学受到可探测自旋波波数有限和通常相对较低灵敏度的影响。在本文中,我们给出了基于最近发展的描述等离子体增强BLS的解析模型的数值模拟结果。有效磁化率定义为旋转椭球形状的单个等离子体纳米粒子,由介电间隔分隔的夹在一起的等离子体纳米粒子,以及磁膜表面的等离子体谐振器阵列。结果表明,金属纳米粒子的偏心率,描述了它们的形状,在增强BLS信号中起主导作用。对不同能量光子的金、银等离激元系统,用数值方法确定了BLS增强的最佳条件。本文的研究结果为等离子体增强BLS光谱的实验实现指明了方向。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
期刊最新文献
Percolation renormalization group analysis of confinement in Z2 lattice gauge theories Evolution of nodal line induced out-of-plane anomalous Hall effect in Co3Sn2S2 Chemical and structural disorder in the kagome spin S=12 systems ZnCu3(OH)6Cl2 and YCu3(OH)6Br2[Brx(OH)1−x] Finite-size topological phases from semimetals Noncollinear phase of the antiferromagnetic sawtooth chain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1