Telomere-to-telomere sheep genome assembly identifies variants associated with wool fineness

IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Nature genetics Pub Date : 2025-01-08 DOI:10.1038/s41588-024-02037-6
Ling-Yun Luo, Hui Wu, Li-Ming Zhao, Ya-Hui Zhang, Jia-Hui Huang, Qiu-Yue Liu, Hai-Tao Wang, Dong-Xin Mo, He-Hua EEr, Lian-Quan Zhang, Hai-Liang Chen, Shan-Gang Jia, Wei-Min Wang, Meng-Hua Li
{"title":"Telomere-to-telomere sheep genome assembly identifies variants associated with wool fineness","authors":"Ling-Yun Luo, Hui Wu, Li-Ming Zhao, Ya-Hui Zhang, Jia-Hui Huang, Qiu-Yue Liu, Hai-Tao Wang, Dong-Xin Mo, He-Hua EEr, Lian-Quan Zhang, Hai-Liang Chen, Shan-Gang Jia, Wei-Min Wang, Meng-Hua Li","doi":"10.1038/s41588-024-02037-6","DOIUrl":null,"url":null,"abstract":"<p>Ongoing efforts to improve sheep reference genome assemblies still leave many gaps and incomplete regions, resulting in a few common failures and errors in genomic studies. Here, we report a 2.85-Gb gap-free telomere-to-telomere genome of a ram (<i>T2T-sheep1.0</i>), including all autosomes and the X and Y chromosomes. This genome adds 220.05 Mb of previously unresolved regions and 754 new genes to the most updated reference assembly <i>ARS-UI_Ramb_v3.0</i>; it contains four types of repeat units (SatI, SatII, SatIII and CenY) in centromeric regions. <i>T2T-sheep1.0</i> has a base accuracy of more than 99.999%, corrects several structural errors in previous reference assemblies and improves structural variant detection in repetitive sequences. Alignment of whole-genome short-read sequences of global domestic and wild sheep against <i>T2T-sheep1.0</i> identifies 2,664,979 new single-nucleotide polymorphisms in previously unresolved regions, which improves the population genetic analyses and detection of selective signals for domestication (for example, <i>ABCC4</i>) and wool fineness (for example, <i>FOXQ1</i>).</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"100 1","pages":""},"PeriodicalIF":31.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-024-02037-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Ongoing efforts to improve sheep reference genome assemblies still leave many gaps and incomplete regions, resulting in a few common failures and errors in genomic studies. Here, we report a 2.85-Gb gap-free telomere-to-telomere genome of a ram (T2T-sheep1.0), including all autosomes and the X and Y chromosomes. This genome adds 220.05 Mb of previously unresolved regions and 754 new genes to the most updated reference assembly ARS-UI_Ramb_v3.0; it contains four types of repeat units (SatI, SatII, SatIII and CenY) in centromeric regions. T2T-sheep1.0 has a base accuracy of more than 99.999%, corrects several structural errors in previous reference assemblies and improves structural variant detection in repetitive sequences. Alignment of whole-genome short-read sequences of global domestic and wild sheep against T2T-sheep1.0 identifies 2,664,979 new single-nucleotide polymorphisms in previously unresolved regions, which improves the population genetic analyses and detection of selective signals for domestication (for example, ABCC4) and wool fineness (for example, FOXQ1).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
期刊最新文献
Brain metastasis prediction Nucleotide-resolution DNA foundation models of prokaryotic genomes Mutations in healthy breast tissue Behavioral insights from single-nucleus neuronal transcriptomics Mutagenesis and analysis of contrasting wheat lines do not support a role for PFT in Fusarium head blight resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1