{"title":"Synthesis and Ring-Opening Polymerization of Bisubstituted ε-Caprolactones Bearing Aryl and Cyano Groups","authors":"Peng-Fei Gao, Hong-Ran Wang, Xiang-Xi Xiao, Wei-Min Ren, Xiao-Bing Lu, Hui Zhou","doi":"10.1016/j.polymer.2025.128034","DOIUrl":null,"url":null,"abstract":"A series of novel 4,4-bisubstituted <em>ε</em>-caprolactone (CL) monomers with pendent aryl and cyano groups were designed and effectively synthesized from commercially available aryl nitriles with methyl acrylate. The synthetic process relies on a tandem double Michael addition-Dieckmann condensation-Krapcho decarboxylation in a one-pot system, followed by a subsequent Baeyer-Villiger oxidation. Furthermore, the ring-opening polymerization of these obtained CL monomers was successfully achieved under mild reaction conditions, employing <em>p</em>-methylbenzyl alcohol as the initiator and 1,5,7-triazabicyclo [4.4.0] dec-5-ene (TBD) as an organocatalyst. The glass transition temperatures (<em>T</em><sub><em>g</em></sub>) of the resultant polyesters were in the range of 45 to 95 °C, strongly dependent on the cyano and aryl substituents. More importantly, the resultant polyesters could be effectively depolymerized in alkali condition to generate the corresponding <em>ε</em>-hydroxy caproic acids with excellent yields, which could be transformed back to their starting monomers <em>via</em> subsequent lactonization process, thus establishing their circular life cycle.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"23 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2025.128034","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A series of novel 4,4-bisubstituted ε-caprolactone (CL) monomers with pendent aryl and cyano groups were designed and effectively synthesized from commercially available aryl nitriles with methyl acrylate. The synthetic process relies on a tandem double Michael addition-Dieckmann condensation-Krapcho decarboxylation in a one-pot system, followed by a subsequent Baeyer-Villiger oxidation. Furthermore, the ring-opening polymerization of these obtained CL monomers was successfully achieved under mild reaction conditions, employing p-methylbenzyl alcohol as the initiator and 1,5,7-triazabicyclo [4.4.0] dec-5-ene (TBD) as an organocatalyst. The glass transition temperatures (Tg) of the resultant polyesters were in the range of 45 to 95 °C, strongly dependent on the cyano and aryl substituents. More importantly, the resultant polyesters could be effectively depolymerized in alkali condition to generate the corresponding ε-hydroxy caproic acids with excellent yields, which could be transformed back to their starting monomers via subsequent lactonization process, thus establishing their circular life cycle.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.