Colorimetric visualization detection of perfluorooctanoic acid based on host–guest interactions with cyclodextrin-modified gold nanoparticles

IF 5.8 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Environmental Science: Nano Pub Date : 2025-01-08 DOI:10.1039/d4en01096e
Jiateng Ma, Chuang Liu, Jiali Li, Zhiquan An, Bihong Zhang, Wenjun Hong, Cheng Ye, Minjie Li, Liang-Hong Guo
{"title":"Colorimetric visualization detection of perfluorooctanoic acid based on host–guest interactions with cyclodextrin-modified gold nanoparticles","authors":"Jiateng Ma, Chuang Liu, Jiali Li, Zhiquan An, Bihong Zhang, Wenjun Hong, Cheng Ye, Minjie Li, Liang-Hong Guo","doi":"10.1039/d4en01096e","DOIUrl":null,"url":null,"abstract":"Perfluorooctanoic acid (PFOA) is a pervasive environmental contaminant known for its resistance to degradation and its tendency to bioaccumulate in living organisms. Due to its persistent and harmful nature, the development of fast, sensitive detection methods is critical for effective environmental monitoring and safeguarding public health. This study developed a colorimetric sensor based on the host–guest interactions between PFOA and cyclodextrin-modified gold nanoparticles (CD@AuNPs) for the visual detection of PFOA. The interaction between cyclodextrin and PFOA induced aggregation of the gold nanoparticles, leading to a visible color change in the solution from red to blue-purple, enabling the visual detection of PFOA. Experimental results demonstrated that the sensor offered satisfactory sensitivity for detection of PFOA, with a detection limit of 170 nM, 156 nM, and 204 nM using α-CD@AuNPs, β-CD@AuNPs and γ-CD@AuNPs respectively. Notably, it maintained selective recognition of PFOA in the presence of other perfluorocarboxylic acids. Recovery rates of spiked PFOA in lake water samples ranged from 98% to 129%. With its simplicity, rapid detection, and cost-efficiency, this method is particularly suited for on-site environmental monitoring.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"36 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en01096e","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Perfluorooctanoic acid (PFOA) is a pervasive environmental contaminant known for its resistance to degradation and its tendency to bioaccumulate in living organisms. Due to its persistent and harmful nature, the development of fast, sensitive detection methods is critical for effective environmental monitoring and safeguarding public health. This study developed a colorimetric sensor based on the host–guest interactions between PFOA and cyclodextrin-modified gold nanoparticles (CD@AuNPs) for the visual detection of PFOA. The interaction between cyclodextrin and PFOA induced aggregation of the gold nanoparticles, leading to a visible color change in the solution from red to blue-purple, enabling the visual detection of PFOA. Experimental results demonstrated that the sensor offered satisfactory sensitivity for detection of PFOA, with a detection limit of 170 nM, 156 nM, and 204 nM using α-CD@AuNPs, β-CD@AuNPs and γ-CD@AuNPs respectively. Notably, it maintained selective recognition of PFOA in the presence of other perfluorocarboxylic acids. Recovery rates of spiked PFOA in lake water samples ranged from 98% to 129%. With its simplicity, rapid detection, and cost-efficiency, this method is particularly suited for on-site environmental monitoring.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
期刊最新文献
Efficient bimetallic metal–organic framework derived magnetic Co/N-PC-800 nanoreactor for peroxymonosulfate activation and carbamazepine degradation Uptake of Polystyrene Nanospheres by Wheat and Arabidopsis Roots in Agar, Hydroponics, and Soil Colorimetric visualization detection of perfluorooctanoic acid based on host–guest interactions with cyclodextrin-modified gold nanoparticles Nanobiotechnology approaches for the remediation of persistent and emerging organic pollutants: strategies, interactions, and effectiveness Promoted solubilization and desorption of petroleum hydrocarbons to remediate contaminated soils using Pickering emulsions stabilized by cellulose nanocrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1