Xue Wan, Michael G. Debije, Fabien Sorin, Mei Chen, Kun Zhou, Albert P.H.J. Schenning
{"title":"Melt-Extruded light-responsive amphibious liquid crystal elastomer fibers with reprogrammable actuation modes","authors":"Xue Wan, Michael G. Debije, Fabien Sorin, Mei Chen, Kun Zhou, Albert P.H.J. Schenning","doi":"10.1016/j.cej.2025.159358","DOIUrl":null,"url":null,"abstract":"Untethered liquid crystal elastomer (LCE) fiber actuators are promising candidates for soft actuators due to their analogies to biological muscles. However, most LCE fiber actuators are difficult to (re)program and primarily only work in air, which significantly hinders their underwater applications. Here, tens-of-meters-long, millimeter-diameter, light-responsive, amphibious LCE fiber actuators with high actuation force are fabricated by melt extruding a thermoplastic LCE containing azobenzene photoswitches and hydrogen-bonding crosslinks. The dynamic hydrogen bonds enable the fibers to be reprogrammed into stretched, twisted and coiled configurations. The actuators demonstrate contracting/expanding and simultaneous rotating motions under ultraviolet light both in air and water environments. The twisted and helical fiber actuators demonstrate rotations of 57° mm<sup>−1</sup> and 14° mm<sup>−1</sup>, respectively, while lifting loads up to 0.08 g underwater, which is approximately 28 times higher than their own weight. The actuation performance enables the control of the movement of an embedded optical fiber while emitting light and the opening and closing of a fiber-sewn fabric in water. A woven multi-material textile sequentially demonstrates contraction in the longitudinal direction under light stimulus in water, followed by contraction in the latitudinal direction under heat stimulus. This work provides a strategy for fabricating light-responsive underwater fiber actuators, with potential applications as artificial muscles and biomedical devices.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"31 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.159358","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Untethered liquid crystal elastomer (LCE) fiber actuators are promising candidates for soft actuators due to their analogies to biological muscles. However, most LCE fiber actuators are difficult to (re)program and primarily only work in air, which significantly hinders their underwater applications. Here, tens-of-meters-long, millimeter-diameter, light-responsive, amphibious LCE fiber actuators with high actuation force are fabricated by melt extruding a thermoplastic LCE containing azobenzene photoswitches and hydrogen-bonding crosslinks. The dynamic hydrogen bonds enable the fibers to be reprogrammed into stretched, twisted and coiled configurations. The actuators demonstrate contracting/expanding and simultaneous rotating motions under ultraviolet light both in air and water environments. The twisted and helical fiber actuators demonstrate rotations of 57° mm−1 and 14° mm−1, respectively, while lifting loads up to 0.08 g underwater, which is approximately 28 times higher than their own weight. The actuation performance enables the control of the movement of an embedded optical fiber while emitting light and the opening and closing of a fiber-sewn fabric in water. A woven multi-material textile sequentially demonstrates contraction in the longitudinal direction under light stimulus in water, followed by contraction in the latitudinal direction under heat stimulus. This work provides a strategy for fabricating light-responsive underwater fiber actuators, with potential applications as artificial muscles and biomedical devices.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.