Dylan Shearsby, Jiaqi Joshua Wu, Dekun Yang, Bo Peng
{"title":"Tuning electronic and optical properties of 2D polymeric C60 by stacking two layers","authors":"Dylan Shearsby, Jiaqi Joshua Wu, Dekun Yang, Bo Peng","doi":"10.1039/d4nr04540h","DOIUrl":null,"url":null,"abstract":"Benefiting from improved stability due to stronger interlayer van der Waals interactions, few-layer fullerene networks are experimentally more accessible compared to monolayer polymeric C<small><sub>60</sub></small>. However, there is a lack of systematic theoretical studies on the material properties of few-layer C<small><sub>60</sub></small> networks. Here, we compare the structural, electronic and optical properties of bilayer and monolayer fullerene networks. The band gap and band-edge positions remain mostly unchanged after stacking two layers into a bilayer, enabling the bilayer to be almost as efficient a photocatalyst as the monolayer. The effective mass ratio along different directions is varied for conduction band states due to interlayer interactions, leading to enhanced anisotropy in carrier transport. Additionally, stronger exciton absorption is found in the bilayer than that in the monolayer over the entire visible light range, rendering the bilayer a more promising candidate for photovoltaics. Moreoever, the polarisation dependence of optical absorption in the bilayer is increased in the red-yellow light range, offering unique opportunities in photonics and display technologies with tailored optical properties over specific directions. Our study provides strategies to tune electronic and optical properties of 2D polymeric C<small><sub>60</sub></small> via the introduction of stacking degrees of freedom.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"59 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04540h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Benefiting from improved stability due to stronger interlayer van der Waals interactions, few-layer fullerene networks are experimentally more accessible compared to monolayer polymeric C60. However, there is a lack of systematic theoretical studies on the material properties of few-layer C60 networks. Here, we compare the structural, electronic and optical properties of bilayer and monolayer fullerene networks. The band gap and band-edge positions remain mostly unchanged after stacking two layers into a bilayer, enabling the bilayer to be almost as efficient a photocatalyst as the monolayer. The effective mass ratio along different directions is varied for conduction band states due to interlayer interactions, leading to enhanced anisotropy in carrier transport. Additionally, stronger exciton absorption is found in the bilayer than that in the monolayer over the entire visible light range, rendering the bilayer a more promising candidate for photovoltaics. Moreoever, the polarisation dependence of optical absorption in the bilayer is increased in the red-yellow light range, offering unique opportunities in photonics and display technologies with tailored optical properties over specific directions. Our study provides strategies to tune electronic and optical properties of 2D polymeric C60 via the introduction of stacking degrees of freedom.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.