A. Anusha, Anjali Yadav, Pratap Vishnoi, Dharmendar Kumar Sharma
{"title":"Mixed Metal Halide Perovskite CsPb1-xSnxBr3 Quantum Dots: Insight into Photophysics from Photoblinking Studies","authors":"A. Anusha, Anjali Yadav, Pratap Vishnoi, Dharmendar Kumar Sharma","doi":"10.1039/d4nr04879b","DOIUrl":null,"url":null,"abstract":"Mixing different metal ions in the B site of ABX<small><sub>3</sub></small> perovskites offers a promising approach to address challenges related to toxicity, stability and performance in optoelectronic applications. One such example is CsPb<small><sub>1-x</sub></small>Sn<small><sub>x</sub></small>Br<small><sub>3</sub></small> which addresses the toxicity issue posed by lead while allowing us to tune optoelectronic properties such as band gap. In this work, nearly monodisperse CsPb<small><sub>1-x</sub></small>Sn<small><sub>x</sub></small>Br<small><sub>3</sub></small> quantum dots (QDs) synthesized with variable Pb/Sn compositions, i.e. CsPbBr<small><sub>3</sub></small>, CsPb<small><sub>0.9</sub></small>Sn<small><sub>0.1</sub></small>Br<small><sub>3</sub></small> and CsPb<small><sub>0.7</sub></small>Sn<small><sub>0.3</sub></small>Br<small><sub>3</sub></small>. Photoluminescence quantum yield (PLQY) of CsPb<small><sub>1-x</sub></small>Sn<small><sub>x</sub></small>Br<small><sub>3</sub></small> first increases for x=0.1 and then decrease for x=0.3 with respect to x=0. Such effect of Sn incorporation on the PLQY investigated using photoblinking studies which revealed three level blinking statistics namely ON, GRAY and OFF. These results along with the excited state lifetime measurements enabled us to understand charge carrier dynamics in CsPb<small><sub>1-x</sub></small>Sn<small><sub>x</sub></small>Br<small><sub>3</sub></small> QDs. Based on our findings we propose that the photogenerated hot electrons of Sn enhances the PLQY by filling TRAP states centered on Pb, which otherwise promote non-radiative relaxations in the Sn free CsPbBr<small><sub>3</sub></small>. However, at higher Sn concentrations, non-radiative recombination becomes more pronounced, reducing the PLQY.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"51 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04879b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mixing different metal ions in the B site of ABX3 perovskites offers a promising approach to address challenges related to toxicity, stability and performance in optoelectronic applications. One such example is CsPb1-xSnxBr3 which addresses the toxicity issue posed by lead while allowing us to tune optoelectronic properties such as band gap. In this work, nearly monodisperse CsPb1-xSnxBr3 quantum dots (QDs) synthesized with variable Pb/Sn compositions, i.e. CsPbBr3, CsPb0.9Sn0.1Br3 and CsPb0.7Sn0.3Br3. Photoluminescence quantum yield (PLQY) of CsPb1-xSnxBr3 first increases for x=0.1 and then decrease for x=0.3 with respect to x=0. Such effect of Sn incorporation on the PLQY investigated using photoblinking studies which revealed three level blinking statistics namely ON, GRAY and OFF. These results along with the excited state lifetime measurements enabled us to understand charge carrier dynamics in CsPb1-xSnxBr3 QDs. Based on our findings we propose that the photogenerated hot electrons of Sn enhances the PLQY by filling TRAP states centered on Pb, which otherwise promote non-radiative relaxations in the Sn free CsPbBr3. However, at higher Sn concentrations, non-radiative recombination becomes more pronounced, reducing the PLQY.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.