Relationship Between Rupture Length and Magnitude of Oceanic Transform Fault Earthquakes

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2025-01-08 DOI:10.1029/2024GL112891
Guilherme W. S. de Melo, Ingo Grevemeyer, Dietrich Lange, Dirk Metz, Heidrun Kopp
{"title":"Relationship Between Rupture Length and Magnitude of Oceanic Transform Fault Earthquakes","authors":"Guilherme W. S. de Melo,&nbsp;Ingo Grevemeyer,&nbsp;Dietrich Lange,&nbsp;Dirk Metz,&nbsp;Heidrun Kopp","doi":"10.1029/2024GL112891","DOIUrl":null,"url":null,"abstract":"<p>The rupture behavior of large oceanic strike-slip earthquakes remains largely unresolved using seismic signals recorded thousands of kilometers away from the source area. Large submarine earthquakes, however, generate hydroacoustic T-waves propagating through the ocean over long distances. Here, we show that these T-waves recorded at regional distances on the Ascension hydrophone array of the International Monitoring System can provide critical information on the earthquake location and rupture behavior. We use recordings from 47 events in oceanic transform faults, ranging in magnitude from 5.6 ≤ <i>M</i><sub><i>w</i></sub> ≤ 7.1, to investigate the rupture processes. We find that most strike-slip earthquakes show unilateral rupture behavior, while a few larger events were more complex. Furthermore, earthquakes in oceanic transforms have longer ruptures than events of the same magnitude in continental faults. We argue that differences in the scaling relation of oceanic and continental strike-slip earthquakes support a lower rigidity in the oceanic lithosphere caused by hydration.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL112891","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL112891","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rupture behavior of large oceanic strike-slip earthquakes remains largely unresolved using seismic signals recorded thousands of kilometers away from the source area. Large submarine earthquakes, however, generate hydroacoustic T-waves propagating through the ocean over long distances. Here, we show that these T-waves recorded at regional distances on the Ascension hydrophone array of the International Monitoring System can provide critical information on the earthquake location and rupture behavior. We use recordings from 47 events in oceanic transform faults, ranging in magnitude from 5.6 ≤ Mw ≤ 7.1, to investigate the rupture processes. We find that most strike-slip earthquakes show unilateral rupture behavior, while a few larger events were more complex. Furthermore, earthquakes in oceanic transforms have longer ruptures than events of the same magnitude in continental faults. We argue that differences in the scaling relation of oceanic and continental strike-slip earthquakes support a lower rigidity in the oceanic lithosphere caused by hydration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海洋转换断层地震破裂长度与震级的关系
大型海洋走滑地震的破裂行为在很大程度上仍未得到解决,使用的是距离震源地区数千公里远的地震信号。然而,大型海底地震会产生水声t波,在海洋中长距离传播。在这里,我们表明,这些t波记录在区域距离的阿森松国际监测系统的水听器阵列可以提供地震位置和破裂行为的关键信息。我们使用了震级从5.6≤Mw≤7.1的47个海洋转换断层事件的记录来研究破裂过程。我们发现大多数走滑地震表现为单边破裂行为,而一些较大的事件则更为复杂。此外,与大陆断层相同震级的地震相比,海洋断层的地震破裂时间更长。我们认为,海洋和大陆走滑地震尺度关系的差异支持了水化作用导致的海洋岩石圈较低的刚性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Mars' Hemispheric Magnetic Field From a Full-Sphere Dynamo A Potential Mushy Source for the Geysers of Enceladus and Other Icy Satellites Transport of Nitric Oxide in the Winter Mesosphere and Lower Thermosphere Understanding the Relationship Between South Pacific Oscillation and ENSO Liquid Fragmentation Induced by Particle Aggregation During Two-Phase Flow in 3D Porous Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1