{"title":"Integral-Omics: Serial Extraction and Profiling of Metabolome, Lipidome, Genome, Transcriptome, Whole Proteome and Phosphoproteome Using Biopsy Tissue","authors":"Wei Li, Jing Sun, Rui Sun, Yujuan Wei, Junke Zheng, Yi Zhu, Tiannan Guo","doi":"10.1021/acs.analchem.4c04421","DOIUrl":null,"url":null,"abstract":"The integrative multiomics characterization of minute amounts of clinical tissue specimens has become increasingly important. Here, we present an approach called Integral-Omics, which enables sequential extraction of metabolites, lipids, genomic DNA, total RNA, proteins, and phosphopeptides from a single biopsy-level tissue specimen. We benchmarked this method with various samples, applied the workflow to perform multiomics profiling of tissues from six patients with colorectal cancer, and found that tumor tissues exhibited suppressed ferroptosis pathways at multiomics levels. Together, this study presents a methodology that enables sequential extraction and profiling of metabolomics, lipidomics, genomics, transcriptomics, proteomics, and phosphoproteomics using biopsy tissue specimens.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"9 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04421","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The integrative multiomics characterization of minute amounts of clinical tissue specimens has become increasingly important. Here, we present an approach called Integral-Omics, which enables sequential extraction of metabolites, lipids, genomic DNA, total RNA, proteins, and phosphopeptides from a single biopsy-level tissue specimen. We benchmarked this method with various samples, applied the workflow to perform multiomics profiling of tissues from six patients with colorectal cancer, and found that tumor tissues exhibited suppressed ferroptosis pathways at multiomics levels. Together, this study presents a methodology that enables sequential extraction and profiling of metabolomics, lipidomics, genomics, transcriptomics, proteomics, and phosphoproteomics using biopsy tissue specimens.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.