Filip Stefanovic, Lauren G. Brown, James MacDonald, Theo Bammler, Darawan Rinchai, Serena Nguyen, Yuting Zeng, Victoria Shinkawa, Karen Adams, Damien Chaussabel, Erwin Berthier, Amanda J. Haack, Ashleigh B. Theberge
{"title":"Your Blood is Out for Delivery: Considerations of Shipping Time and Temperature on Degradation of RNA from Stabilized Whole Blood","authors":"Filip Stefanovic, Lauren G. Brown, James MacDonald, Theo Bammler, Darawan Rinchai, Serena Nguyen, Yuting Zeng, Victoria Shinkawa, Karen Adams, Damien Chaussabel, Erwin Berthier, Amanda J. Haack, Ashleigh B. Theberge","doi":"10.1021/acs.analchem.4c04591","DOIUrl":null,"url":null,"abstract":"Remote research studies are an invaluable tool for reaching populations with limited access to large medical centers or universities. To expand the remote study toolkit, we previously developed homeRNA, which allows for at-home self-collection and stabilization of blood and demonstrated the feasibility of using homeRNA in high temperature climates. Here, we expand upon this work through a systematic study exploring the effects of high temperature on RNA integrity (represented as RNA Integrity Number, RIN) through in-lab and field experiments. Compared to the frozen controls (overall mean RIN of 8.2, <i>n</i> = 8), samples kept at 37 °C for 2, 4, and 8 days had mean RINs of 7.6, 5.9, and 5.2 (<i>n</i> = 3), respectively, indicating that typical shipping conditions (∼2 days) yield samples suitable for downstream RNA sequencing. Shorter time intervals (6 h) resulted in minimal RNA degradation (median RIN of 6.4, <i>n</i> = 3) even at higher temperatures (50 °C) compared to the frozen control (mean RIN of 7.8, <i>n</i> = 3). Additionally, we shipped homeRNA-stabilized blood from a single donor to 14 states and back during the summer with continuous temperature probes (7.1 median RIN, <i>n</i> = 42). Samples from all locations were analyzed with 3′ mRNA-seq to assess differences in gene counts, with the data suggesting that there was no preferential degradation of transcripts as a result of different shipping times, temperatures, and regions. Overall, our data support that homeRNA can be used in elevated temperature conditions, enabling decentralized sample collection for telemedicine, global health, and clinical research.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"50 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04591","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Remote research studies are an invaluable tool for reaching populations with limited access to large medical centers or universities. To expand the remote study toolkit, we previously developed homeRNA, which allows for at-home self-collection and stabilization of blood and demonstrated the feasibility of using homeRNA in high temperature climates. Here, we expand upon this work through a systematic study exploring the effects of high temperature on RNA integrity (represented as RNA Integrity Number, RIN) through in-lab and field experiments. Compared to the frozen controls (overall mean RIN of 8.2, n = 8), samples kept at 37 °C for 2, 4, and 8 days had mean RINs of 7.6, 5.9, and 5.2 (n = 3), respectively, indicating that typical shipping conditions (∼2 days) yield samples suitable for downstream RNA sequencing. Shorter time intervals (6 h) resulted in minimal RNA degradation (median RIN of 6.4, n = 3) even at higher temperatures (50 °C) compared to the frozen control (mean RIN of 7.8, n = 3). Additionally, we shipped homeRNA-stabilized blood from a single donor to 14 states and back during the summer with continuous temperature probes (7.1 median RIN, n = 42). Samples from all locations were analyzed with 3′ mRNA-seq to assess differences in gene counts, with the data suggesting that there was no preferential degradation of transcripts as a result of different shipping times, temperatures, and regions. Overall, our data support that homeRNA can be used in elevated temperature conditions, enabling decentralized sample collection for telemedicine, global health, and clinical research.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.