Apoorva Prabhu, Julian Zaugg, Cheong Xin Chan, Simon J. McIlroy, Chris Rinke
{"title":"Insights Into Phylogeny, Diversity and Functional Potential of Poseidoniales Viruses","authors":"Apoorva Prabhu, Julian Zaugg, Cheong Xin Chan, Simon J. McIlroy, Chris Rinke","doi":"10.1111/1462-2920.70017","DOIUrl":null,"url":null,"abstract":"<p>Viruses infecting archaea play significant ecological roles in marine ecosystems through host infection and lysis, yet they have remained an underexplored component of the virosphere. In this study, we recovered 451 archaeal viruses from a subtropical estuary, identifying 63 that are associated with the dominant marine order Poseidoniales (Marine Group II Archaea). Phylogenetic analyses of a subset of complete and nearly-complete viral genomes assigned these viruses to the order <i>Magrovirales</i>, a lineage of <i>Poseidoniales</i> viruses, and identified a novel group of viruses distinct from <i>Magrovirales</i>. Utilising demarcation criteria established for the classification of archaeal tailed viruses, we propose two families within the order Magrovirales: Apasviridae (magrovirus group A), comprising the genera Agnivirus and Savitrvirus, and Krittikaviridae (magrovirus group E) encompassing the genus Velanvirus. Additionally, we propose a new order, distinct from <i>Magrovirales</i>, named Adrikavirales, which includes the genus Vyasavirus. Our detailed genomic characterisation of the new viral lineages revealed genes involved in viral assembly and egress, such as those responsible for creating holin rafts to lyse host cell membranes, a feature predominantly known from bacteriophages. Furthermore, we identified a broad spectrum of auxiliary metabolic genes, suggesting that these viruses can modulate host metabolism. Collectively, our findings substantially enhance the current understanding of the diversity and functional potential of <i>Poseidoniales</i> viruses.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70017","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Viruses infecting archaea play significant ecological roles in marine ecosystems through host infection and lysis, yet they have remained an underexplored component of the virosphere. In this study, we recovered 451 archaeal viruses from a subtropical estuary, identifying 63 that are associated with the dominant marine order Poseidoniales (Marine Group II Archaea). Phylogenetic analyses of a subset of complete and nearly-complete viral genomes assigned these viruses to the order Magrovirales, a lineage of Poseidoniales viruses, and identified a novel group of viruses distinct from Magrovirales. Utilising demarcation criteria established for the classification of archaeal tailed viruses, we propose two families within the order Magrovirales: Apasviridae (magrovirus group A), comprising the genera Agnivirus and Savitrvirus, and Krittikaviridae (magrovirus group E) encompassing the genus Velanvirus. Additionally, we propose a new order, distinct from Magrovirales, named Adrikavirales, which includes the genus Vyasavirus. Our detailed genomic characterisation of the new viral lineages revealed genes involved in viral assembly and egress, such as those responsible for creating holin rafts to lyse host cell membranes, a feature predominantly known from bacteriophages. Furthermore, we identified a broad spectrum of auxiliary metabolic genes, suggesting that these viruses can modulate host metabolism. Collectively, our findings substantially enhance the current understanding of the diversity and functional potential of Poseidoniales viruses.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens