A Novel Lineage of Endosymbiotic Actinomycetales: Genome Reduction and Acquisition of New Functions in Bifidobacteriaceae Associated With Termite Gut Flagellates
Joana Kästle Silva, Vincent Hervé, Undine S. Mies, Katja Platt, Andreas Brune
{"title":"A Novel Lineage of Endosymbiotic Actinomycetales: Genome Reduction and Acquisition of New Functions in Bifidobacteriaceae Associated With Termite Gut Flagellates","authors":"Joana Kästle Silva, Vincent Hervé, Undine S. Mies, Katja Platt, Andreas Brune","doi":"10.1111/1462-2920.70010","DOIUrl":null,"url":null,"abstract":"<p>Cellulolytic flagellates are essential for the symbiotic digestion of lignocellulose in the gut of lower termites. Most species are associated with host-specific consortia of bacterial symbionts from various phyla. 16S rRNA-based diversity studies and taxon-specific fluorescence in situ hybridization revealed a termite-specific clade of <i>Actinomycetales</i> that colonise the cytoplasm of <i>Trichonympha</i> spp. and other gut flagellates, representing the only known case of intracellular <i>Actinomycetota</i> in protists. Comparative analysis of eleven metagenome-assembled genomes from lower termites allowed us to describe them as new genera of <i>Bifidobacteriaceae</i>. Like the previously investigated <i>Candidatus</i> Ancillula trichonymphae, they ferment sugars via the bifidobacterium shunt but, unlike their free-living relatives, experienced significant genome erosion. Additionally, they acquired new functions by horizontal gene transfer from other gut bacteria, including the capacity to produce hydrogen. Members of the genus <i>Ancillula</i> (average genome size 1.56 ± 0.2 Mbp) retained most pathways for the synthesis of amino acids, including a threonine/serine exporter, providing concrete evidence for the basis of the mutualistic relationship with their host. By contrast, <i>Opitulatrix</i> species (1.23 ± 0.1 Mbp) lost most of their biosynthetic capacities, indicating that an originally mutualistic symbiosis is on the decline.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70010","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulolytic flagellates are essential for the symbiotic digestion of lignocellulose in the gut of lower termites. Most species are associated with host-specific consortia of bacterial symbionts from various phyla. 16S rRNA-based diversity studies and taxon-specific fluorescence in situ hybridization revealed a termite-specific clade of Actinomycetales that colonise the cytoplasm of Trichonympha spp. and other gut flagellates, representing the only known case of intracellular Actinomycetota in protists. Comparative analysis of eleven metagenome-assembled genomes from lower termites allowed us to describe them as new genera of Bifidobacteriaceae. Like the previously investigated Candidatus Ancillula trichonymphae, they ferment sugars via the bifidobacterium shunt but, unlike their free-living relatives, experienced significant genome erosion. Additionally, they acquired new functions by horizontal gene transfer from other gut bacteria, including the capacity to produce hydrogen. Members of the genus Ancillula (average genome size 1.56 ± 0.2 Mbp) retained most pathways for the synthesis of amino acids, including a threonine/serine exporter, providing concrete evidence for the basis of the mutualistic relationship with their host. By contrast, Opitulatrix species (1.23 ± 0.1 Mbp) lost most of their biosynthetic capacities, indicating that an originally mutualistic symbiosis is on the decline.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens