Resilient Control Under Denial-of-Service and Uncertainty: An Adaptive Dynamic Programming Approach

IF 7 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Automatic Control Pub Date : 2025-01-08 DOI:10.1109/TAC.2025.3527305
Weinan Gao;Zhong-Ping Jiang;Tianyou Chai
{"title":"Resilient Control Under Denial-of-Service and Uncertainty: An Adaptive Dynamic Programming Approach","authors":"Weinan Gao;Zhong-Ping Jiang;Tianyou Chai","doi":"10.1109/TAC.2025.3527305","DOIUrl":null,"url":null,"abstract":"In this article, a new framework for the resilient control of continuous-time linear systems under denial-of-service (DoS) attacks and system uncertainty is presented. Integrating techniques from reinforcement learning and output regulation theory, it is shown that resilient optimal controllers can be learned directly from real-time state and input data collected from the systems subjected to attacks. Sufficient conditions are given under which the closed-loop system remains stable given any upper bound of DoS attack duration. Simulation results are used to demonstrate the efficacy of the proposed learning-based framework for resilient control under DoS attacks and model uncertainty.","PeriodicalId":13201,"journal":{"name":"IEEE Transactions on Automatic Control","volume":"70 6","pages":"4085-4092"},"PeriodicalIF":7.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Automatic Control","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10833734/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a new framework for the resilient control of continuous-time linear systems under denial-of-service (DoS) attacks and system uncertainty is presented. Integrating techniques from reinforcement learning and output regulation theory, it is shown that resilient optimal controllers can be learned directly from real-time state and input data collected from the systems subjected to attacks. Sufficient conditions are given under which the closed-loop system remains stable given any upper bound of DoS attack duration. Simulation results are used to demonstrate the efficacy of the proposed learning-based framework for resilient control under DoS attacks and model uncertainty.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拒绝服务和不确定性下的弹性控制:一种自适应动态规划方法
本文提出了一种新的连续时间线性系统在拒绝服务攻击和系统不确定性下的弹性控制框架。结合强化学习技术和输出调节理论,表明弹性最优控制器可以直接从遭受攻击的系统的实时状态和输入数据中学习。给出了在任意DoS攻击时间上界下闭环系统保持稳定的充分条件。仿真结果验证了所提出的基于学习的框架在DoS攻击和模型不确定性下的弹性控制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Automatic Control
IEEE Transactions on Automatic Control 工程技术-工程:电子与电气
CiteScore
11.30
自引率
5.90%
发文量
824
审稿时长
9 months
期刊介绍: In the IEEE Transactions on Automatic Control, the IEEE Control Systems Society publishes high-quality papers on the theory, design, and applications of control engineering. Two types of contributions are regularly considered: 1) Papers: Presentation of significant research, development, or application of control concepts. 2) Technical Notes and Correspondence: Brief technical notes, comments on published areas or established control topics, corrections to papers and notes published in the Transactions. In addition, special papers (tutorials, surveys, and perspectives on the theory and applications of control systems topics) are solicited.
期刊最新文献
Inverse Reinforcement Learning via a Modified Kleinman Iteration Approach FIR Stabilizability Ensures Stabilizability by Non-FIR Controllers Having Integer Monic Characteristic Polynomials Approximate Predictive Control Barrier Function for Discrete-Time Systems Conditions for boundedness of under-tuned super-twisting sliding mode control loops A kernel-based approach to physics-informed nonlinear system identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1