{"title":"Unveiling galaxy pair alignment in cosmic filaments: A 3D exploration using EAGLE simulation","authors":"Suman Sarkar and Biswajit Pandey","doi":"10.1088/1475-7516/2025/01/023","DOIUrl":null,"url":null,"abstract":"We investigate how galaxy pairs are oriented in three dimensions within cosmic filaments using data from the EAGLE simulation. We identify filament spines using DisPerSE and isolate galaxies residing in filamentary environments. Employing a FoF algorithm, we delineate individual filaments and determine their axes by diagonalizing the moment of inertia tensor. The orientations of galaxy pairs relative to the axis of their host filament are analyzed. Our study covers diverse subsets of filaments identified through varying linking lengths, examining how galaxy pairs align with the filament axis across different spatial parameters such as pair separation and distance from the filament spine. We observe a nearly uniform probability distribution for the cosine of the orientation angle, which is nearly identical in each case. We also investigate the effects of redshift space distortions and confirm that the probability distributions remain uniform in both real space and redshift space. To validate our approach, we conduct Monte Carlo simulations using various theoretical probability distributions. Our analysis does not reveal any evidence of preferential alignment of galaxy pairs within cosmic filaments in hydrodynamical simulations.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"37 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/023","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate how galaxy pairs are oriented in three dimensions within cosmic filaments using data from the EAGLE simulation. We identify filament spines using DisPerSE and isolate galaxies residing in filamentary environments. Employing a FoF algorithm, we delineate individual filaments and determine their axes by diagonalizing the moment of inertia tensor. The orientations of galaxy pairs relative to the axis of their host filament are analyzed. Our study covers diverse subsets of filaments identified through varying linking lengths, examining how galaxy pairs align with the filament axis across different spatial parameters such as pair separation and distance from the filament spine. We observe a nearly uniform probability distribution for the cosine of the orientation angle, which is nearly identical in each case. We also investigate the effects of redshift space distortions and confirm that the probability distributions remain uniform in both real space and redshift space. To validate our approach, we conduct Monte Carlo simulations using various theoretical probability distributions. Our analysis does not reveal any evidence of preferential alignment of galaxy pairs within cosmic filaments in hydrodynamical simulations.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.