Bayesian technique to combine independently-trained machine-learning models applied to direct dark matter detection

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Journal of Cosmology and Astroparticle Physics Pub Date : 2025-01-09 DOI:10.1088/1475-7516/2025/01/038
David Cerdeño, Martin de los Rios and Andres D. Perez
{"title":"Bayesian technique to combine independently-trained machine-learning models applied to direct dark matter detection","authors":"David Cerdeño, Martin de los Rios and Andres D. Perez","doi":"10.1088/1475-7516/2025/01/038","DOIUrl":null,"url":null,"abstract":"We carry out a Bayesian analysis of dark matter (DM) direct detection data to determine particle model parameters using the Truncated Marginal Neural Ratio Estimation (TMNRE) machine learning technique. TMNRE avoids an explicit calculation of the likelihood, which instead is estimated from simulated data, unlike in traditional Markov Chain Monte Carlo (MCMC) algorithms. This considerably speeds up, by several orders of magnitude, the computation of the posterior distributions, which allows to perform the Bayesian analysis of an otherwise computationally prohibitive number of benchmark points. In this article we demonstrate that, in the TMNRE framework, it is possible to include, combine, and remove different datasets in a modular fashion, which is fast and simple as there is no need to re-train the machine learning algorithm or to define a combined likelihood. In order to assess the performance of this method, we consider the case of WIMP DM with spin-dependent and independent interactions with protons and neutrons in a xenon experiment. After validating our results with MCMC, we employ the TMNRE procedure to determine the regions where the DM parameters can be reconstructed. Finally, we present CADDENA, a Python package that implements the modular Bayesian analysis of direct detection experiments described in this work.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"23 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/038","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We carry out a Bayesian analysis of dark matter (DM) direct detection data to determine particle model parameters using the Truncated Marginal Neural Ratio Estimation (TMNRE) machine learning technique. TMNRE avoids an explicit calculation of the likelihood, which instead is estimated from simulated data, unlike in traditional Markov Chain Monte Carlo (MCMC) algorithms. This considerably speeds up, by several orders of magnitude, the computation of the posterior distributions, which allows to perform the Bayesian analysis of an otherwise computationally prohibitive number of benchmark points. In this article we demonstrate that, in the TMNRE framework, it is possible to include, combine, and remove different datasets in a modular fashion, which is fast and simple as there is no need to re-train the machine learning algorithm or to define a combined likelihood. In order to assess the performance of this method, we consider the case of WIMP DM with spin-dependent and independent interactions with protons and neutrons in a xenon experiment. After validating our results with MCMC, we employ the TMNRE procedure to determine the regions where the DM parameters can be reconstructed. Finally, we present CADDENA, a Python package that implements the modular Bayesian analysis of direct detection experiments described in this work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯技术,结合独立训练的机器学习模型,应用于直接暗物质探测
我们使用截断边际神经比率估计(TMNRE)机器学习技术对暗物质(DM)直接检测数据进行贝叶斯分析,以确定粒子模型参数。与传统的马尔可夫链蒙特卡罗(MCMC)算法不同,TMNRE避免了显式的似然计算,而是从模拟数据中进行估计。这大大加快了后验分布的计算速度,提高了几个数量级,从而允许对大量基准点执行贝叶斯分析。在本文中,我们演示了在TMNRE框架中,可以以模块化的方式包含、组合和删除不同的数据集,这是快速和简单的,因为不需要重新训练机器学习算法或定义组合可能性。为了评估该方法的性能,我们在氙实验中考虑了与质子和中子具有自旋依赖和独立相互作用的WIMP DM的情况。在用MCMC验证了我们的结果之后,我们使用TMNRE程序来确定可以重建DM参数的区域。最后,我们介绍了cadaddena,一个Python包,它实现了本工作中描述的直接检测实验的模块化贝叶斯分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
期刊最新文献
Spacetime surgery for black hole fireworks Distinct photon-ALP propagation modes Ultra slow-roll with a black hole ANNZ+: an enhanced photometric redshift estimation algorithm with applications on the PAU survey Hot Casimir wormholes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1