Attoampere Level Leakage Current in Chemical Vapor Deposition-Grown Monolayer MoS2 Dynamic Random-Access Memory in Trap-Assisted Tunneling Limit

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-01-09 DOI:10.1021/acsnano.4c13376
Jisoo Seok, Jae Eun Seo, Dae Kyu Lee, Joon Young Kwak, Jiwon Chang
{"title":"Attoampere Level Leakage Current in Chemical Vapor Deposition-Grown Monolayer MoS2 Dynamic Random-Access Memory in Trap-Assisted Tunneling Limit","authors":"Jisoo Seok, Jae Eun Seo, Dae Kyu Lee, Joon Young Kwak, Jiwon Chang","doi":"10.1021/acsnano.4c13376","DOIUrl":null,"url":null,"abstract":"MoS<sub>2</sub>, one of the most researched two-dimensional semiconductor materials, has great potential as the channel material in dynamic random-access memory (DRAM) due to the low leakage current inherited from the atomically thin thickness, high band gap, and heavy effective mass. In this work, we fabricate one-transistor-one-capacitor (1T1C) DRAM using chemical vapor deposition (CVD)-grown monolayer (ML) MoS<sub>2</sub> in large area and confirm the ultralow leakage current of approximately 10<sup>–18</sup> A/μm, significantly lower than the previous report (10<sup>–15</sup> A/μm) in two-transistor-zero-capacitor (2T0C) DRAM based on a few-layer MoS<sub>2</sub> flake. Through rigorous analysis of leakage current considering thermionic emission, tunneling at the source/drain, Shockley–Read–Hall recombination, and trap-assisted tunneling (TAT) current, the TAT current is identified as the primary source of leakage current. These findings highlight the potential of CVD-grown ML MoS<sub>2</sub> to extend the retention time in DRAM and provide a deep understanding of the leakage current sources in MoS<sub>2</sub> 1T1C DRAM for further optimization to minimize the leakage current.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"15 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13376","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

MoS2, one of the most researched two-dimensional semiconductor materials, has great potential as the channel material in dynamic random-access memory (DRAM) due to the low leakage current inherited from the atomically thin thickness, high band gap, and heavy effective mass. In this work, we fabricate one-transistor-one-capacitor (1T1C) DRAM using chemical vapor deposition (CVD)-grown monolayer (ML) MoS2 in large area and confirm the ultralow leakage current of approximately 10–18 A/μm, significantly lower than the previous report (10–15 A/μm) in two-transistor-zero-capacitor (2T0C) DRAM based on a few-layer MoS2 flake. Through rigorous analysis of leakage current considering thermionic emission, tunneling at the source/drain, Shockley–Read–Hall recombination, and trap-assisted tunneling (TAT) current, the TAT current is identified as the primary source of leakage current. These findings highlight the potential of CVD-grown ML MoS2 to extend the retention time in DRAM and provide a deep understanding of the leakage current sources in MoS2 1T1C DRAM for further optimization to minimize the leakage current.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
化学气相沉积生长的单层MoS2动态随机存取存储器在陷阱辅助隧道极限下的阿安培级泄漏电流
二硫化钼是目前研究最多的二维半导体材料之一,具有原子厚度薄、带隙高、有效质量大、漏电流小等优点,在动态随机存取存储器(DRAM)中具有很大的应用潜力。在这项工作中,我们使用化学气相沉积(CVD)大面积生长的单层(ML) MoS2制备了单晶体管-单电容(1T1C) DRAM,并证实了基于几层MoS2薄片的双晶体管-零电容(2T0C) DRAM的超低漏电流约为10-18 A/μm,显著低于之前报道的10-15 A/μm。通过考虑热离子发射、源极/漏极隧穿、Shockley-Read-Hall复合和阱辅助隧穿(TAT)电流对漏电流的严格分析,确定TAT电流是漏电流的主要来源。这些发现突出了cvd生长的ML MoS2在延长DRAM中保留时间方面的潜力,并提供了对MoS2 1T1C DRAM中泄漏电流源的深入了解,以便进一步优化以最小化泄漏电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Synthesis and Self-Assembly of Monodisperse Graphene Nanoribbons: Access to Submicron Architectures with Long-Range Order and Uniform Orientation Nanoenzyme-Anchored Mitofactories Boost Mitochondrial Transplantation to Restore Locomotor Function after Paralysis Following Spinal Cord Injury Scalable Fabrication of Freestanding Jammed Nanoparticle Films via Pickering Emulsion-Mediated Interfacial Assembly Gold Single Atom Doped Defective Nanoporous Copper Octahedrons for Electrocatalytic Reduction of Carbon Dioxide to Ethylene Engineered Extracellular Vesicles Modified by Angiopep-2 Peptide Promote Targeted Repair of Spinal Cord Injury and Brain Inflammation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1