Anna Solé-Gil, Yuuki Sakai, Bruno Catarino, Victor A.S. Jones, Christopher E. Youngstrom, Joan Jordà-Segura, Chi-Lien Cheng, Liam Dolan, Barbara A. Ambrose, Kimitsune Ishizaki, Miguel A. Blázquez, Javier Agustí
{"title":"Divergent evolution of a thermospermine-dependent regulatory pathway in land plants","authors":"Anna Solé-Gil, Yuuki Sakai, Bruno Catarino, Victor A.S. Jones, Christopher E. Youngstrom, Joan Jordà-Segura, Chi-Lien Cheng, Liam Dolan, Barbara A. Ambrose, Kimitsune Ishizaki, Miguel A. Blázquez, Javier Agustí","doi":"10.1016/j.devcel.2024.12.027","DOIUrl":null,"url":null,"abstract":"Plants adapted to life on land by developing diverse anatomical features across lineages. The molecular basis of these innovations often involves the emergence of new genes or establishing new connections between conserved elements, though evidence for evolutionary genetic circuit rewiring remains scarce. Here, we show that the thermospermine-dependent pathway regulating vascular cell proliferation in <em>Arabidopsis thaliana</em> operates as two distinct modules with different functions in the bryophyte <em>Marchantia polymorpha</em>. One module controls dichotomous branching at meristems, while the other one modulates gemmae and rhizoid production in the thallus. Heterologous assays and comparative expression analyses reveal that the molecular links between these modules, forming a unified circuit in vascular plants, emerged early in tracheophyte evolution. Our results illustrate how the thermospermine-dependent circuit elements followed two divergent evolutionary trajectories in bryophytes and tracheophytes, eventually influencing distinct developmental processes.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"470 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.12.027","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants adapted to life on land by developing diverse anatomical features across lineages. The molecular basis of these innovations often involves the emergence of new genes or establishing new connections between conserved elements, though evidence for evolutionary genetic circuit rewiring remains scarce. Here, we show that the thermospermine-dependent pathway regulating vascular cell proliferation in Arabidopsis thaliana operates as two distinct modules with different functions in the bryophyte Marchantia polymorpha. One module controls dichotomous branching at meristems, while the other one modulates gemmae and rhizoid production in the thallus. Heterologous assays and comparative expression analyses reveal that the molecular links between these modules, forming a unified circuit in vascular plants, emerged early in tracheophyte evolution. Our results illustrate how the thermospermine-dependent circuit elements followed two divergent evolutionary trajectories in bryophytes and tracheophytes, eventually influencing distinct developmental processes.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.