Felipe Valença-Pereira, Ryan M. Sheridan, Kent A. Riemondy, Tina Thornton, Qian Fang, Brad Barret, Gabriela Paludo, Claudia Thompson, Patrick Collins, Mario Santiago, Eugene Oltz, Mercedes Rincon
{"title":"Inactivation of GSK3β by Ser389 phosphorylation prevents thymocyte necroptosis and impacts Tcr repertoire diversity","authors":"Felipe Valença-Pereira, Ryan M. Sheridan, Kent A. Riemondy, Tina Thornton, Qian Fang, Brad Barret, Gabriela Paludo, Claudia Thompson, Patrick Collins, Mario Santiago, Eugene Oltz, Mercedes Rincon","doi":"10.1038/s41418-024-01441-z","DOIUrl":null,"url":null,"abstract":"<p>The assembly of <i>Tcrb</i> and <i>Tcra</i> genes require double negative (DN) thymocytes to undergo multiple rounds of programmed DNA double-strand breaks (DSBs), followed by their efficient repair. However, mechanisms governing cell cycle checkpoints and specific survival pathways during the repair process remain unclear. Here, we report high-resolution scRNA-seq analyses of individually sorted mouse DN3 and DN4 thymocytes, which reveals a G2M cell cycle checkpoint, in addition to the known G1 checkpoint, during <i>Tcrb</i> and <i>Tcra</i> recombination. We also show that inactivation of GSK3β by phosphorylation on Ser<sup>389</sup> is essential for DN3/DN4 thymocytes to survive while being stalled at the G1 and G2/M checkpoints. GSK3β promotes death by necroptosis, but not by apoptosis, of DN3/DN4 thymocytes during V(D)J recombination. Failure to inactivate GSK3β in DN3 thymocytes alters the <i>Tcrb</i> gene repertoire primarily through <i>Trbv</i> segment utilization. In addition, preferential recombination of proximal V segments in <i>Tcra</i> depends on GSK3β inactivation. Our study identifies a unique thymocyte survival pathway, enabling them to undergo cell cycle checkpoints for DNA repair during V(D)J recombination of <i>Tcrb</i> and <i>Tcra</i> genes. Thymocyte survival during cell cycle checkpoints for V(D)J recombination DNA repair determines TCRα/β repertoire.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"2 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-024-01441-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The assembly of Tcrb and Tcra genes require double negative (DN) thymocytes to undergo multiple rounds of programmed DNA double-strand breaks (DSBs), followed by their efficient repair. However, mechanisms governing cell cycle checkpoints and specific survival pathways during the repair process remain unclear. Here, we report high-resolution scRNA-seq analyses of individually sorted mouse DN3 and DN4 thymocytes, which reveals a G2M cell cycle checkpoint, in addition to the known G1 checkpoint, during Tcrb and Tcra recombination. We also show that inactivation of GSK3β by phosphorylation on Ser389 is essential for DN3/DN4 thymocytes to survive while being stalled at the G1 and G2/M checkpoints. GSK3β promotes death by necroptosis, but not by apoptosis, of DN3/DN4 thymocytes during V(D)J recombination. Failure to inactivate GSK3β in DN3 thymocytes alters the Tcrb gene repertoire primarily through Trbv segment utilization. In addition, preferential recombination of proximal V segments in Tcra depends on GSK3β inactivation. Our study identifies a unique thymocyte survival pathway, enabling them to undergo cell cycle checkpoints for DNA repair during V(D)J recombination of Tcrb and Tcra genes. Thymocyte survival during cell cycle checkpoints for V(D)J recombination DNA repair determines TCRα/β repertoire.
期刊介绍:
Mission, vision and values of Cell Death & Differentiation:
To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease.
To provide a unified forum for scientists and clinical researchers
It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.