Revolutionizing Dual‐Band Modulation and Superior Cycling Stability in GDQDs‐Doped WO3 Electrochromic Films for Advanced Smart Window Applications

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2025-01-09 DOI:10.1002/smll.202407708
Wenjun Wu, Maofei Tian, Yanbang Tang, Chengyu Song, Rongzong Zheng, Yang Guo, Chunyang Jia
{"title":"Revolutionizing Dual‐Band Modulation and Superior Cycling Stability in GDQDs‐Doped WO3 Electrochromic Films for Advanced Smart Window Applications","authors":"Wenjun Wu, Maofei Tian, Yanbang Tang, Chengyu Song, Rongzong Zheng, Yang Guo, Chunyang Jia","doi":"10.1002/smll.202407708","DOIUrl":null,"url":null,"abstract":"Dual‐band tungsten oxide (WO<jats:sub>3</jats:sub>) electrochromic films are extensively investigated, yet challenges persist regarding complex fabrication processes and limited cyclic stability. In this paper, a novel approach to prepare graphdiyne quantum dots (GDQDs) doped WO<jats:sub>3</jats:sub> films with a hexagonal crystal structure, is presented. Structural characterization reveals that the GDQDs/WO<jats:sub>3</jats:sub> possesses a coral‐like, loose structure with high crystallinity due to the synergistic modulation of morphology and crystallinity. Electrochemical tests confirm that this unique structure provides abundant multi‐active sites and efficient electrolyte ion channels, which facilitate the ion insertion/extraction to promote the electrochromic process. The GDQDs/WO<jats:sub>3</jats:sub> films exhabit impressive electrochromic performance, with rapid swithing (12.6/8.4 s for bleaching/coloration), high coloring efficiency (104.78 cm<jats:sup>2</jats:sup>C<jats:sup>−1</jats:sup> at 1100 nm), and independent dual‐band transmittance changes (ΔT, with ΔT<jats:sub>633</jats:sub> <jats:sub>nm</jats:sub> = 64.54%, ΔT<jats:sub>1100</jats:sub> <jats:sub>nm</jats:sub> = 83.52% and ΔT<jats:sub>1600</jats:sub> <jats:sub>nm</jats:sub> = 79.80%), and exceptional stability (remained 95.1% modulation range after 20 000 cycles). The unique characteristics of GDQDs lead to the formation of a built‐in electric field via charge transfer, which optimizes and enriches the energy level structure of WO<jats:sub>3</jats:sub>. This solution not only advances the development of electrochromic technology, but also opens the door for future innovative applications of smart materials.","PeriodicalId":228,"journal":{"name":"Small","volume":"28 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407708","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dual‐band tungsten oxide (WO3) electrochromic films are extensively investigated, yet challenges persist regarding complex fabrication processes and limited cyclic stability. In this paper, a novel approach to prepare graphdiyne quantum dots (GDQDs) doped WO3 films with a hexagonal crystal structure, is presented. Structural characterization reveals that the GDQDs/WO3 possesses a coral‐like, loose structure with high crystallinity due to the synergistic modulation of morphology and crystallinity. Electrochemical tests confirm that this unique structure provides abundant multi‐active sites and efficient electrolyte ion channels, which facilitate the ion insertion/extraction to promote the electrochromic process. The GDQDs/WO3 films exhabit impressive electrochromic performance, with rapid swithing (12.6/8.4 s for bleaching/coloration), high coloring efficiency (104.78 cm2C−1 at 1100 nm), and independent dual‐band transmittance changes (ΔT, with ΔT633 nm = 64.54%, ΔT1100 nm = 83.52% and ΔT1600 nm = 79.80%), and exceptional stability (remained 95.1% modulation range after 20 000 cycles). The unique characteristics of GDQDs lead to the formation of a built‐in electric field via charge transfer, which optimizes and enriches the energy level structure of WO3. This solution not only advances the development of electrochromic technology, but also opens the door for future innovative applications of smart materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于先进智能窗口应用的GDQDs掺杂WO3电致变色薄膜的革命性双波段调制和优越的循环稳定性
双波段氧化钨(WO3)电致变色薄膜被广泛研究,但在复杂的制造工艺和有限的循环稳定性方面仍然存在挑战。本文提出了一种制备六方掺杂WO3石墨烯量子点薄膜的新方法。结构表征表明,由于形态和结晶度的协同调节,GDQDs/WO3具有类似珊瑚的高结晶度松散结构。电化学测试证实,这种独特的结构提供了丰富的多活性位点和高效的电解质离子通道,有利于离子的插入/提取,从而促进电致变色过程。GDQDs/WO3薄膜表现出令人惊叹的电致变色性能,具有快速转换(漂白/显色时间为12.6/8.4 s)、高显色效率(在1100 nm处为104.78 cm2C−1)、独立的双波段透射率变化(ΔT,其中ΔT633 nm = 64.54%、ΔT1100 nm = 83.52%和ΔT1600 nm = 79.80%)和优异的稳定性(在20,000次循环后仍保持95.1%的调制范围)。GDQDs的独特特性使其通过电荷转移形成内置电场,从而优化和丰富了WO3的能级结构。这一解决方案不仅推动了电致变色技术的发展,也为未来智能材料的创新应用打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Systematic Study of the Synthesis of Monodisperse CsPbI3 Perovskite Nanoplatelets for Efficient Color-Pure Light Emitting Diodes Dissecting Key Factors Influencing Electrochemical Conversion of Carbon Solutions over Nickel Single Atoms Neuron Modulation by Synergetic Management of Redox Status and Oxidative Stress Interface Engineering and Modulation of Nickel Oxide for High Air-Stable p-Type Crystalline Silicon Solar Cells Modulating Electronic Density of Single-Atom Ni Center by Heteroatoms for Efficient CO2 Electroreduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1