Lyubov Gimadeeva, Andrei Ushakov, Alexey Pugachev, Anton Turygin, Ruiyi Jing, Qingyuan Hu, Xiaoyong Wei, Zimeng Hu, Vladimir Shur, Li Jin, Denis Alikin
{"title":"Mesoscale mechanisms of the diffuse dielectric behaviour and retention of the polar nano-regions in the polycrystalline ferroelectric BaTiO3","authors":"Lyubov Gimadeeva, Andrei Ushakov, Alexey Pugachev, Anton Turygin, Ruiyi Jing, Qingyuan Hu, Xiaoyong Wei, Zimeng Hu, Vladimir Shur, Li Jin, Denis Alikin","doi":"10.1016/j.jmat.2025.101014","DOIUrl":null,"url":null,"abstract":"Barium titanate is a classical ferroelectric material that exhibits a jump-like behavior in the order parameter, spontaneous polarization, near the temperature of its transition to the paraelectric phase. This serves as a textbook example of a first-order phase transition, marked by the coexistence of polar and non-polar phase regions. Despite compelling evidence of the gradual phase transformation across Curie temperature (<em>T</em><sub>c</sub>) and partial retention of ferroelectric properties above <em>T</em><sub>c</sub>, the microscopic mechanisms of the phase retention remain unclear. Current study explains temperature anomalies in the macroscopic characteristics of polycrystalline barium titanate by employing complementary macroscopic and local techniques. Our findings reveal that retention of the polar phase regions is driven by the charged defects, which act as the origin of the spatially non-uniform internal electric fields. The insights from this research offer a deeper understanding of the fundamental mechanisms governing ferroelectric behavior and open new possibilities for tailoring materials with phase coexistence for a wide range of technological applications.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"9 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2025.101014","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Barium titanate is a classical ferroelectric material that exhibits a jump-like behavior in the order parameter, spontaneous polarization, near the temperature of its transition to the paraelectric phase. This serves as a textbook example of a first-order phase transition, marked by the coexistence of polar and non-polar phase regions. Despite compelling evidence of the gradual phase transformation across Curie temperature (Tc) and partial retention of ferroelectric properties above Tc, the microscopic mechanisms of the phase retention remain unclear. Current study explains temperature anomalies in the macroscopic characteristics of polycrystalline barium titanate by employing complementary macroscopic and local techniques. Our findings reveal that retention of the polar phase regions is driven by the charged defects, which act as the origin of the spatially non-uniform internal electric fields. The insights from this research offer a deeper understanding of the fundamental mechanisms governing ferroelectric behavior and open new possibilities for tailoring materials with phase coexistence for a wide range of technological applications.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.