Host metabolism balances microbial regulation of bile acid signalling

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2025-01-08 DOI:10.1038/s41586-024-08379-9
Tae Hyung Won, Mohammad Arifuzzaman, Christopher N. Parkhurst, Isabella C. Miranda, Bingsen Zhang, Elin Hu, Sanchita Kashyap, Jeffrey Letourneau, Wen-Bing Jin, Yousi Fu, Douglas V. Guzior, Robert A. Quinn, Chun-Jun Guo, Lawrence A. David, David Artis, Frank C. Schroeder
{"title":"Host metabolism balances microbial regulation of bile acid signalling","authors":"Tae Hyung Won, Mohammad Arifuzzaman, Christopher N. Parkhurst, Isabella C. Miranda, Bingsen Zhang, Elin Hu, Sanchita Kashyap, Jeffrey Letourneau, Wen-Bing Jin, Yousi Fu, Douglas V. Guzior, Robert A. Quinn, Chun-Jun Guo, Lawrence A. David, David Artis, Frank C. Schroeder","doi":"10.1038/s41586-024-08379-9","DOIUrl":null,"url":null,"abstract":"<p>Metabolites derived from the intestinal microbiota, including bile acids (BA), extensively modulate vertebrate physiology, including development<sup>1</sup>, metabolism<sup>2,3,4</sup>, immune responses<sup>5,6,7</sup> and cognitive function<sup>8</sup>. However, to what extent host responses balance the physiological effects of microbiota-derived metabolites remains unclear<sup>9,10</sup>. Here, using untargeted metabolomics of mouse tissues, we identified a family of BA–methylcysteamine (BA–MCY) conjugates that are abundant in the intestine and dependent on vanin 1 (VNN1), a pantetheinase highly expressed in intestinal tissues. This host-dependent MCY conjugation inverts BA function in the hepatobiliary system. Whereas microbiota-derived free BAs function as agonists of the farnesoid X receptor (FXR) and negatively regulate BA production, BA–MCYs act as potent antagonists of FXR and promote expression of BA biosynthesis genes in vivo. Supplementation with stable-isotope-labelled BA–MCY increased BA production in an FXR-dependent manner, and BA–MCY supplementation in a mouse model of hypercholesteraemia decreased lipid accumulation in the liver, consistent with BA–MCYs acting as intestinal FXR antagonists. The levels of BA–MCY were reduced in microbiota-deficient mice and restored by transplantation of human faecal microbiota. Dietary intervention with inulin fibre further increased levels of both free BAs and BA–MCY levels, indicating that BA–MCY production by the host is regulated by levels of microbiota-derived free BAs. We further show that diverse BA–MCYs are also present in human serum. Together, our results indicate that BA–MCY conjugation by the host balances host-dependent and microbiota-dependent metabolic pathways that regulate FXR-dependent physiology.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"6 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08379-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolites derived from the intestinal microbiota, including bile acids (BA), extensively modulate vertebrate physiology, including development1, metabolism2,3,4, immune responses5,6,7 and cognitive function8. However, to what extent host responses balance the physiological effects of microbiota-derived metabolites remains unclear9,10. Here, using untargeted metabolomics of mouse tissues, we identified a family of BA–methylcysteamine (BA–MCY) conjugates that are abundant in the intestine and dependent on vanin 1 (VNN1), a pantetheinase highly expressed in intestinal tissues. This host-dependent MCY conjugation inverts BA function in the hepatobiliary system. Whereas microbiota-derived free BAs function as agonists of the farnesoid X receptor (FXR) and negatively regulate BA production, BA–MCYs act as potent antagonists of FXR and promote expression of BA biosynthesis genes in vivo. Supplementation with stable-isotope-labelled BA–MCY increased BA production in an FXR-dependent manner, and BA–MCY supplementation in a mouse model of hypercholesteraemia decreased lipid accumulation in the liver, consistent with BA–MCYs acting as intestinal FXR antagonists. The levels of BA–MCY were reduced in microbiota-deficient mice and restored by transplantation of human faecal microbiota. Dietary intervention with inulin fibre further increased levels of both free BAs and BA–MCY levels, indicating that BA–MCY production by the host is regulated by levels of microbiota-derived free BAs. We further show that diverse BA–MCYs are also present in human serum. Together, our results indicate that BA–MCY conjugation by the host balances host-dependent and microbiota-dependent metabolic pathways that regulate FXR-dependent physiology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
Mines for a clean-energy metal have a surprise climate effect How to be a brilliant ally to your neurodivergent lab mate Why fires spread quickly in modern cities ― and how to slow them Trump will weaken climate action — the rest of the US must not follow suit A generative model for inorganic materials design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1