Systematic Evaluation of Sampling Rate Influences and Variability in POCIS Using Meta-Analysis and Quantitative Structure Property Relationship (QSPR)

IF 7.6 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Pollution Pub Date : 2025-01-09 DOI:10.1016/j.envpol.2025.125666
Peiyu Jiang, Yiping Xu, Kaifeng Rao, Mei Ma, Zijian Wang
{"title":"Systematic Evaluation of Sampling Rate Influences and Variability in POCIS Using Meta-Analysis and Quantitative Structure Property Relationship (QSPR)","authors":"Peiyu Jiang, Yiping Xu, Kaifeng Rao, Mei Ma, Zijian Wang","doi":"10.1016/j.envpol.2025.125666","DOIUrl":null,"url":null,"abstract":"Despite the significant benefits of aquatic passive sampling (low detection limits and time-weighted average concentrations), the use of passive samplers is impeded by uncertainties, particularly concerning the accuracy of sampling rates. This study employed a systematic evaluation approach based on the combination of meta-analysis and quantitative structure-property relationships (QSPR) models to address these issues. A comprehensive meta-analysis based on extensive data from 298 studies on the Polar Organic Chemical Integrative Sampler (POCIS) identified essential configuration parameters, including the receiving phase (type, mass) and the diffusion-limiting membrane (type, thickness, pore size), as key factors influencing uptake kinetic parameters. The incomplete availability of these details across studies potentially impacts data reproducibility and comparability. The subsequent meta-regression and subgroup analysis were performed to reveal the most significant factors contributing to sampling rate variability and inter-study heterogeneity. The flow rate and octanol-water partitioning (K<sub>ow</sub> or pH-dependent D<sub>ow</sub>) were identified from all environmental factors and chemical properties. Furthermore, the impact of chemical properties on the sampling rates of POCIS was predicted by Quantitative Structure-Property Relationship (QSPR) models using 2D descriptors and random forest regression. The analysis highlighted that the electrotopological state and molecular mass are the most important chemical properties influencing the sampling rate. This study systematically unraveled the most important impact factors on reliable estimates of passive sampling rates, and these causes of uncertainty should be further considered in aquatic monitoring and assessment with passive samplers.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"36 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.125666","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the significant benefits of aquatic passive sampling (low detection limits and time-weighted average concentrations), the use of passive samplers is impeded by uncertainties, particularly concerning the accuracy of sampling rates. This study employed a systematic evaluation approach based on the combination of meta-analysis and quantitative structure-property relationships (QSPR) models to address these issues. A comprehensive meta-analysis based on extensive data from 298 studies on the Polar Organic Chemical Integrative Sampler (POCIS) identified essential configuration parameters, including the receiving phase (type, mass) and the diffusion-limiting membrane (type, thickness, pore size), as key factors influencing uptake kinetic parameters. The incomplete availability of these details across studies potentially impacts data reproducibility and comparability. The subsequent meta-regression and subgroup analysis were performed to reveal the most significant factors contributing to sampling rate variability and inter-study heterogeneity. The flow rate and octanol-water partitioning (Kow or pH-dependent Dow) were identified from all environmental factors and chemical properties. Furthermore, the impact of chemical properties on the sampling rates of POCIS was predicted by Quantitative Structure-Property Relationship (QSPR) models using 2D descriptors and random forest regression. The analysis highlighted that the electrotopological state and molecular mass are the most important chemical properties influencing the sampling rate. This study systematically unraveled the most important impact factors on reliable estimates of passive sampling rates, and these causes of uncertainty should be further considered in aquatic monitoring and assessment with passive samplers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Pollution
Environmental Pollution 环境科学-环境科学
CiteScore
16.00
自引率
6.70%
发文量
2082
审稿时长
2.9 months
期刊介绍: Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health. Subject areas include, but are not limited to: • Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies; • Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change; • Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects; • Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects; • Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest; • New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.
期刊最新文献
Key environmental predictors of Noctiluca scintillans distribution in the China Sea and its climate change response Halogenated organic compounds in mangrove sediments from Bintan Island, Indonesia: Occurrence, profiles, sources, and potential ecological risk The short-term comprehensive impact of the phase-out of global coal combustion on air pollution and climate change Systematic Evaluation of Sampling Rate Influences and Variability in POCIS Using Meta-Analysis and Quantitative Structure Property Relationship (QSPR) Adsorption-desorption of propyrisulfuron in six typical agricultural soils of China: kinetics, thermodynamics, influence of 38 environmental factors and its mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1