Abundant and active community members respond to diel cycles in hot spring phototrophic mats

Amanda N Shelton, Feiqiao B Yu, Arthur R Grossman, Devaki Bhaya
{"title":"Abundant and active community members respond to diel cycles in hot spring phototrophic mats","authors":"Amanda N Shelton, Feiqiao B Yu, Arthur R Grossman, Devaki Bhaya","doi":"10.1093/ismejo/wraf001","DOIUrl":null,"url":null,"abstract":"Photosynthetic microbial mats in hot springs can provide insights into the diel behaviors of communities in extreme environments. In this habitat, photosynthesis dominates during the day, leading to super-oxic conditions, with a rapid transition to fermentation and anoxia at night. Multiple samples were collected from two springs over several years to generate metagenomic and metatranscriptomic datasets. Metagenome assembled genomes comprised 71 taxa (in 19 different phyla), of which twelve core taxa were present at high abundance in both springs. The eight most active taxa identified by metatranscriptomics were an oxygenic cyanobacterium (Synechococcus sp.), five anoxygenic phototrophs from three different phyla, and two understudied heterotrophs from phylum Armatimonadota. In all eight taxa, a significant fraction of genes exhibited a diel expression pattern although peak timing varied considerably. The two abundant heterotrophs exhibit starkly different peak timing of expression, which we propose is shaped by their metabolic and genomic potential to use carbon sources that become differentially available during the diel cycle. Network analysis revealed pathway expression patterns that had not previously been linked to diel cycles, including ribosome biogenesis and chaperones. This provides a framework for analyzing metabolically coupled communities and the dominant role of the diel cycle.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photosynthetic microbial mats in hot springs can provide insights into the diel behaviors of communities in extreme environments. In this habitat, photosynthesis dominates during the day, leading to super-oxic conditions, with a rapid transition to fermentation and anoxia at night. Multiple samples were collected from two springs over several years to generate metagenomic and metatranscriptomic datasets. Metagenome assembled genomes comprised 71 taxa (in 19 different phyla), of which twelve core taxa were present at high abundance in both springs. The eight most active taxa identified by metatranscriptomics were an oxygenic cyanobacterium (Synechococcus sp.), five anoxygenic phototrophs from three different phyla, and two understudied heterotrophs from phylum Armatimonadota. In all eight taxa, a significant fraction of genes exhibited a diel expression pattern although peak timing varied considerably. The two abundant heterotrophs exhibit starkly different peak timing of expression, which we propose is shaped by their metabolic and genomic potential to use carbon sources that become differentially available during the diel cycle. Network analysis revealed pathway expression patterns that had not previously been linked to diel cycles, including ribosome biogenesis and chaperones. This provides a framework for analyzing metabolically coupled communities and the dominant role of the diel cycle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dispersal promotes stability and persistence of exploited yeast mutualisms Abundant and active community members respond to diel cycles in hot spring phototrophic mats Magnetotactic bacteria from diverse Pseudomonadota families biomineralize intracellular Ca-carbonate Polymerization of dietary fructans differentially affects interactions among intestinal microbiota of colitis mice Escherichia coli phage-inducible chromosomal island aids helper phage replication and represses the LEE pathogenicity island
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1