β-C−H bond functionalization of ketones and esters by cationic Pd complexes

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2025-01-08 DOI:10.1038/s41586-024-08281-4
Yi-Hao Li, Nikita Chekshin, Yilin Lu, Jin-Quan Yu
{"title":"β-C−H bond functionalization of ketones and esters by cationic Pd complexes","authors":"Yi-Hao Li, Nikita Chekshin, Yilin Lu, Jin-Quan Yu","doi":"10.1038/s41586-024-08281-4","DOIUrl":null,"url":null,"abstract":"<p>C–H activation is the most direct way of functionalizing organic molecules. Many advances in this field still require specific directing groups to achieve the necessary activity and selectivity. Developing C–H activation reactions directed by native functional groups is essential for their broad application in synthesis<sup>1</sup>. Over the past decade, several generations of bifunctional ligands developed have enabled C(<i>sp</i><sup>3</sup>)–H activation reactions of free carboxylic acids<sup>2</sup>, free aliphatic amines<sup>3</sup>, native amides<sup>4,5</sup> and alcohols<sup>6</sup>. However, an effective catalyst for ketones and carboxylic esters remains to be realized. Here we report diverse methyl β-C−H functionalizations, including intermolecular arylation, hydroxylation and intramolecular C(<i>sp</i><sup>3</sup>)–H/C(<i>sp</i><sup>2</sup>)–H coupling of ketones and carboxylic esters with a monoprotected amino neutral amide (MPANA) ligand. The in situ generation of cationic Pd(II) complexes by the combination MPANA ligand and HBF<sub>4</sub> is crucial for achieving the reactivity. The compatibility of these reactions with cyclic ketones and lactams provides a method to access spirocyclic and fused ring systems. Mechanistic experiments and density functional theory studies support the role of cationic Pd complexes with MPANA ligands in enhancing catalyst–substrate affinity and facilitating the C−H cleavage step.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"13 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08281-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

C–H activation is the most direct way of functionalizing organic molecules. Many advances in this field still require specific directing groups to achieve the necessary activity and selectivity. Developing C–H activation reactions directed by native functional groups is essential for their broad application in synthesis1. Over the past decade, several generations of bifunctional ligands developed have enabled C(sp3)–H activation reactions of free carboxylic acids2, free aliphatic amines3, native amides4,5 and alcohols6. However, an effective catalyst for ketones and carboxylic esters remains to be realized. Here we report diverse methyl β-C−H functionalizations, including intermolecular arylation, hydroxylation and intramolecular C(sp3)–H/C(sp2)–H coupling of ketones and carboxylic esters with a monoprotected amino neutral amide (MPANA) ligand. The in situ generation of cationic Pd(II) complexes by the combination MPANA ligand and HBF4 is crucial for achieving the reactivity. The compatibility of these reactions with cyclic ketones and lactams provides a method to access spirocyclic and fused ring systems. Mechanistic experiments and density functional theory studies support the role of cationic Pd complexes with MPANA ligands in enhancing catalyst–substrate affinity and facilitating the C−H cleavage step.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
Jimmy Carter obituary: former US president who dedicated his life after office to peace, human rights and global health Mind matters: investigating academia’s ‘mental health crisis’ Rising stars in AI use robotics and automation to accelerate their work Earth breaches 1.5 °C climate limit for the first time: what does it mean? These are the 20 most-studied bacteria — the majority have been ignored
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1