Armoring Vascular Implant by Glycocalyx‐Mimetic Coating with Clustered Morphology and Hydrophilic Lubrication

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-09 DOI:10.1002/adfm.202414136
Fanjun Zhang, Yao Xiong, Yage Hu, Jingze Liu, Yuan Wei, Li Yang, Rifang Luo, Yunbing Wang
{"title":"Armoring Vascular Implant by Glycocalyx‐Mimetic Coating with Clustered Morphology and Hydrophilic Lubrication","authors":"Fanjun Zhang, Yao Xiong, Yage Hu, Jingze Liu, Yuan Wei, Li Yang, Rifang Luo, Yunbing Wang","doi":"10.1002/adfm.202414136","DOIUrl":null,"url":null,"abstract":"The endothelial glycocalyx is a natural protective layer for blood vessels. Efficient construction of a reliable glycocalyx‐mimetic coating on a vascular implant possesses great potential but remains a challenge. Herein, a novel glycocalyx‐mimetic coating featuring the clustered morphology and hydrophilic lubrication is developed via the layer‐by‐layer self‐assembly of polyethyleneimine (PEI) and phosphorylcholine‐modified hyaluronic acid (HA‐PC). The zwitterionic PC groups in HA‐PC exhibited an anti‐polyelectrolyte effect to induce the molecular folding and aggregation of HA in solution and enhance its binding capacity to PEI, resulting in an endothelial glycocalyx‐mimetic clustered morphology. Besides, zwitterions, rather than hydrophobic groups, can achieve hydrophilic lubrication properties through spatial synergy with HA while inducing the molecular folding of HA, ultimately constructing a glycocalyx‐mimetic coating. Such a coating can function well as armor to vascular stent, by virtue of excellent anti‐coagulation, anti‐inflammation, and endothelial promotion properties in vivo and in vitro. The findings not only provide new insights into the interactions between PC‐modified polyelectrolytes but also render a promising glycocalyx‐mimetic coating to armor vascular implants.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"82 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414136","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The endothelial glycocalyx is a natural protective layer for blood vessels. Efficient construction of a reliable glycocalyx‐mimetic coating on a vascular implant possesses great potential but remains a challenge. Herein, a novel glycocalyx‐mimetic coating featuring the clustered morphology and hydrophilic lubrication is developed via the layer‐by‐layer self‐assembly of polyethyleneimine (PEI) and phosphorylcholine‐modified hyaluronic acid (HA‐PC). The zwitterionic PC groups in HA‐PC exhibited an anti‐polyelectrolyte effect to induce the molecular folding and aggregation of HA in solution and enhance its binding capacity to PEI, resulting in an endothelial glycocalyx‐mimetic clustered morphology. Besides, zwitterions, rather than hydrophobic groups, can achieve hydrophilic lubrication properties through spatial synergy with HA while inducing the molecular folding of HA, ultimately constructing a glycocalyx‐mimetic coating. Such a coating can function well as armor to vascular stent, by virtue of excellent anti‐coagulation, anti‐inflammation, and endothelial promotion properties in vivo and in vitro. The findings not only provide new insights into the interactions between PC‐modified polyelectrolytes but also render a promising glycocalyx‐mimetic coating to armor vascular implants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Conformal iCVD‐Modified Electrodes for Enhanced Mass Transfer in High‐Rate CO2 Electroreduction Origin and Potentialities of the Selective Host‐Matrix Effect in Hydrogenated III‐V‐N Alloys (Adv. Funct. Mater. 2/2025) Armoring Vascular Implant by Glycocalyx‐Mimetic Coating with Clustered Morphology and Hydrophilic Lubrication Direct Upcycling of Degraded LiCoO2 Material Toward High‐Performance Single‐Crystal NCM Cathode (Adv. Funct. Mater. 2/2025) Enhanced Yield and Compatibility of Exfoliated MoS2 through Iodine‐Assisted Thermal Treatment of Powders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1