A vision–language foundation model for precision oncology

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2025-01-08 DOI:10.1038/s41586-024-08378-w
Jinxi Xiang, Xiyue Wang, Xiaoming Zhang, Yinghua Xi, Feyisope Eweje, Yijiang Chen, Yuchen Li, Colin Bergstrom, Matthew Gopaulchan, Ted Kim, Kun-Hsing Yu, Sierra Willens, Francesca Maria Olguin, Jeffrey J. Nirschl, Joel Neal, Maximilian Diehn, Sen Yang, Ruijiang Li
{"title":"A vision–language foundation model for precision oncology","authors":"Jinxi Xiang, Xiyue Wang, Xiaoming Zhang, Yinghua Xi, Feyisope Eweje, Yijiang Chen, Yuchen Li, Colin Bergstrom, Matthew Gopaulchan, Ted Kim, Kun-Hsing Yu, Sierra Willens, Francesca Maria Olguin, Jeffrey J. Nirschl, Joel Neal, Maximilian Diehn, Sen Yang, Ruijiang Li","doi":"10.1038/s41586-024-08378-w","DOIUrl":null,"url":null,"abstract":"<p>Clinical decision-making is driven by multimodal data, including clinical notes and pathological characteristics. Artificial intelligence approaches that can effectively integrate multimodal data hold significant promise in advancing clinical care<sup>1,2</sup>. However, the scarcity of well-annotated multimodal datasets in clinical settings has hindered the development of useful models. In this study, we developed the Multimodal transformer with Unified maSKed modeling (MUSK), a vision–language foundation model designed to leverage large-scale, unlabelled, unpaired image and text data. MUSK was pretrained on 50 million pathology images from 11,577 patients and one billion pathology-related text tokens using unified masked modelling. It was further pretrained on one million pathology image–text pairs to efficiently align the vision and language features. With minimal or no further training, MUSK was tested in a wide range of applications and demonstrated superior performance across 23 patch-level and slide-level benchmarks, including image-to-text and text-to-image retrieval, visual question answering, image classification and molecular biomarker prediction. Furthermore, MUSK showed strong performance in outcome prediction, including melanoma relapse prediction, pan-cancer prognosis prediction and immunotherapy response prediction in lung and gastro-oesophageal cancers. MUSK effectively combined complementary information from pathology images and clinical reports and could potentially improve diagnosis and precision in cancer therapy.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"13 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08378-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Clinical decision-making is driven by multimodal data, including clinical notes and pathological characteristics. Artificial intelligence approaches that can effectively integrate multimodal data hold significant promise in advancing clinical care1,2. However, the scarcity of well-annotated multimodal datasets in clinical settings has hindered the development of useful models. In this study, we developed the Multimodal transformer with Unified maSKed modeling (MUSK), a vision–language foundation model designed to leverage large-scale, unlabelled, unpaired image and text data. MUSK was pretrained on 50 million pathology images from 11,577 patients and one billion pathology-related text tokens using unified masked modelling. It was further pretrained on one million pathology image–text pairs to efficiently align the vision and language features. With minimal or no further training, MUSK was tested in a wide range of applications and demonstrated superior performance across 23 patch-level and slide-level benchmarks, including image-to-text and text-to-image retrieval, visual question answering, image classification and molecular biomarker prediction. Furthermore, MUSK showed strong performance in outcome prediction, including melanoma relapse prediction, pan-cancer prognosis prediction and immunotherapy response prediction in lung and gastro-oesophageal cancers. MUSK effectively combined complementary information from pathology images and clinical reports and could potentially improve diagnosis and precision in cancer therapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
What Trump 2.0 means for science: the likely winners and losers Dear Donald Trump: A letter from Nature on how to make science thrive Two companies launch Moon missions together: will they make history? Author Correction: An endosomal tether undergoes an entropic collapse to bring vesicles together Road trip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1