Preparation of mesoporous Cu₂O nanospheres for green synthesis in the enantioselective boron conjugate addition of α,β‐unsaturated chiral compounds in aqueous phase
Xuhong Zhao, Lian Ma, Meng Wang, Weishuang Li, Yaoyao Zhang, Bojie Li, Zhongpu Fang, Bo Xiong, Lei Zhu
{"title":"Preparation of mesoporous Cu₂O nanospheres for green synthesis in the enantioselective boron conjugate addition of α,β‐unsaturated chiral compounds in aqueous phase","authors":"Xuhong Zhao, Lian Ma, Meng Wang, Weishuang Li, Yaoyao Zhang, Bojie Li, Zhongpu Fang, Bo Xiong, Lei Zhu","doi":"10.1002/adsc.202401501","DOIUrl":null,"url":null,"abstract":"Chiral organoboron compounds are essential intermediates in various significant reactions. However, there are still few efficient catalysts for their synthesis. This paper reports a novel catalytic material for chiral asymmetric boron conjugate addition reactions: mesoporous Cu₂O nanospheres (M‐Cu₂O). M‐Cu₂O is approximately 0.55 μm, exhibiting dense and uniformly distributed worm‐like pores. It features a specific surface area of 15.7 m²/g and an average pore size of 14.3 nm. Under the conditions of Toluene:H2O = 9:1, with a chiral ligand amount of 3.6 mol% and no additional base, it achieves a high yield (98% yield) and impressive enantioselectivity (98% ee ) for the template substrate chalcone using only 3.0 mol% of the catalyst. Notably, the catalyst can be easily recovered and maintains robust catalytic performance after seven cycles, yielding 92% and an ee value of 90%. This work presents a mild and effective method for synthesizing chiral boron compounds in an aqueous phase, significantly enhancing the application potential of mesoporous copper oxide nanospheres.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"6 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202401501","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Chiral organoboron compounds are essential intermediates in various significant reactions. However, there are still few efficient catalysts for their synthesis. This paper reports a novel catalytic material for chiral asymmetric boron conjugate addition reactions: mesoporous Cu₂O nanospheres (M‐Cu₂O). M‐Cu₂O is approximately 0.55 μm, exhibiting dense and uniformly distributed worm‐like pores. It features a specific surface area of 15.7 m²/g and an average pore size of 14.3 nm. Under the conditions of Toluene:H2O = 9:1, with a chiral ligand amount of 3.6 mol% and no additional base, it achieves a high yield (98% yield) and impressive enantioselectivity (98% ee ) for the template substrate chalcone using only 3.0 mol% of the catalyst. Notably, the catalyst can be easily recovered and maintains robust catalytic performance after seven cycles, yielding 92% and an ee value of 90%. This work presents a mild and effective method for synthesizing chiral boron compounds in an aqueous phase, significantly enhancing the application potential of mesoporous copper oxide nanospheres.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.