Taishi Xiao, Lixun Cheng, Zheng Chen, Yan Hu, Xiang Yao, Junxiang Shu, Sailin Yuan, Yao Ma, Can Tang, Zhewei Huang, Bin Shen, Wenzhong Bao, Xin Xu, Binghui Ge, Zhengzong Sun
{"title":"Electrocatalytic Mapping of Metal Fatigue with Persistent Slip Bands","authors":"Taishi Xiao, Lixun Cheng, Zheng Chen, Yan Hu, Xiang Yao, Junxiang Shu, Sailin Yuan, Yao Ma, Can Tang, Zhewei Huang, Bin Shen, Wenzhong Bao, Xin Xu, Binghui Ge, Zhengzong Sun","doi":"10.1021/jacs.4c12114","DOIUrl":null,"url":null,"abstract":"Metal fatigue, characterized by the accumulation of dislocation defects, is a prevalent failure mode in structural materials. Nondestructive early-stage detection of metal fatigue is extremely important to prevent disastrous events and protect human life. However, the lack of a precise quantitative method to visualize fatigue with spatiotemporal resolution poses a significant obstacle to timely detection. Here, we demonstrate a nondestructive electrocatalytic method to visualize metal fatigue, which is promising for future fatigue early detections. The persistent slip band (PSB) is considered one of the most consequential defect structures for metal fatigue failure. The selective electrochemistry is highly dependent on the metal crystallography and the collective dislocations in the PSB structure, enabling the amplification of the electrochemical response and differentiation of the fatigue stages at a submillimeter resolution. In addition, this nondestructive electrocatalytic method is applicable to several common metals, including copper, silver, iron, and aluminum, holding great significance where metal fatigue is a critical concern.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"20 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12114","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal fatigue, characterized by the accumulation of dislocation defects, is a prevalent failure mode in structural materials. Nondestructive early-stage detection of metal fatigue is extremely important to prevent disastrous events and protect human life. However, the lack of a precise quantitative method to visualize fatigue with spatiotemporal resolution poses a significant obstacle to timely detection. Here, we demonstrate a nondestructive electrocatalytic method to visualize metal fatigue, which is promising for future fatigue early detections. The persistent slip band (PSB) is considered one of the most consequential defect structures for metal fatigue failure. The selective electrochemistry is highly dependent on the metal crystallography and the collective dislocations in the PSB structure, enabling the amplification of the electrochemical response and differentiation of the fatigue stages at a submillimeter resolution. In addition, this nondestructive electrocatalytic method is applicable to several common metals, including copper, silver, iron, and aluminum, holding great significance where metal fatigue is a critical concern.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.