Electrocatalytic Mapping of Metal Fatigue with Persistent Slip Bands

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-01-09 DOI:10.1021/jacs.4c12114
Taishi Xiao, Lixun Cheng, Zheng Chen, Yan Hu, Xiang Yao, Junxiang Shu, Sailin Yuan, Yao Ma, Can Tang, Zhewei Huang, Bin Shen, Wenzhong Bao, Xin Xu, Binghui Ge, Zhengzong Sun
{"title":"Electrocatalytic Mapping of Metal Fatigue with Persistent Slip Bands","authors":"Taishi Xiao, Lixun Cheng, Zheng Chen, Yan Hu, Xiang Yao, Junxiang Shu, Sailin Yuan, Yao Ma, Can Tang, Zhewei Huang, Bin Shen, Wenzhong Bao, Xin Xu, Binghui Ge, Zhengzong Sun","doi":"10.1021/jacs.4c12114","DOIUrl":null,"url":null,"abstract":"Metal fatigue, characterized by the accumulation of dislocation defects, is a prevalent failure mode in structural materials. Nondestructive early-stage detection of metal fatigue is extremely important to prevent disastrous events and protect human life. However, the lack of a precise quantitative method to visualize fatigue with spatiotemporal resolution poses a significant obstacle to timely detection. Here, we demonstrate a nondestructive electrocatalytic method to visualize metal fatigue, which is promising for future fatigue early detections. The persistent slip band (PSB) is considered one of the most consequential defect structures for metal fatigue failure. The selective electrochemistry is highly dependent on the metal crystallography and the collective dislocations in the PSB structure, enabling the amplification of the electrochemical response and differentiation of the fatigue stages at a submillimeter resolution. In addition, this nondestructive electrocatalytic method is applicable to several common metals, including copper, silver, iron, and aluminum, holding great significance where metal fatigue is a critical concern.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"20 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12114","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal fatigue, characterized by the accumulation of dislocation defects, is a prevalent failure mode in structural materials. Nondestructive early-stage detection of metal fatigue is extremely important to prevent disastrous events and protect human life. However, the lack of a precise quantitative method to visualize fatigue with spatiotemporal resolution poses a significant obstacle to timely detection. Here, we demonstrate a nondestructive electrocatalytic method to visualize metal fatigue, which is promising for future fatigue early detections. The persistent slip band (PSB) is considered one of the most consequential defect structures for metal fatigue failure. The selective electrochemistry is highly dependent on the metal crystallography and the collective dislocations in the PSB structure, enabling the amplification of the electrochemical response and differentiation of the fatigue stages at a submillimeter resolution. In addition, this nondestructive electrocatalytic method is applicable to several common metals, including copper, silver, iron, and aluminum, holding great significance where metal fatigue is a critical concern.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Electrocatalytic Mapping of Metal Fatigue with Persistent Slip Bands Pseudo-Phosphorylated Tau Forms Paired Helical Filaments in the Presence of High-Curvature Cholesterol-Containing Lipid Membranes Permanent Nanobubbles in Water: Liquefied Hollow Carbon Spheres Break the Limiting Diffusion Current of Oxygen Reduction Reaction Altermagnetism: A Chemical Perspective Aminoalkylation of Alkenes Enabled by Triple Radical Sorting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1