Chunfeng Xie, Xinyao Jiang, Juan Yin, Runqiu Jiang, Jianyun Zhu, Shenshan Zou
{"title":"Bisphenol S accelerates the progression of high fat diet-induced NAFLD by triggering ferroptosis via regulating HMGCS2","authors":"Chunfeng Xie, Xinyao Jiang, Juan Yin, Runqiu Jiang, Jianyun Zhu, Shenshan Zou","doi":"10.1016/j.jhazmat.2025.137166","DOIUrl":null,"url":null,"abstract":"Bisphenol S (BPS) is a widely detected environmental toxin with the potential to increase the risk of non-alcoholic fatty liver disease (NAFLD). However, the effects of BPS on the progression of high fat diet (HFD)-induced NAFLD remain unclear. This study aimed to explore the role and underlying mechanisms of action of BPS in HFD-induced NAFLD. Our results showed that BPS exposure (50 and 500<!-- --> <!-- -->μg/kg bodyweight/day) promoted the progression of NAFLD, which was evidenced by increased liver/body weight ratio, elevated serum alanine aminotransferase and aspartate aminotransferase levels, and more and larger lipid droplets in liver tissues. These phenomena were accompanied by abnormal expression levels of fatty acid uptake (<em>Cd36</em>), fatty acid synthesis (<em>Pparγ</em>, <em>Scd-1, and Fasn</em>), fatty acid oxidation (<em>Pparα</em>), and cytokines (<em>TNFα, IL-1β,</em> and <em>IL-6</em>). <em>In vitro</em> and <em>in vivo</em> studies showed that BPS exposure caused hepatic ferroptosis by regulating ferroptosis-related markers (GPX4, xCT, FTH, and ACSL4). Moreover, BPS exposure caused ROS overproduction, mitochondrial dysfunction, lipid peroxidation, and GSH suppression, all of which were restored by ferrostatin-1, a ferroptosis inhibitor. Moreover, BPS significantly upregulated HMGCS2 expression in the hepatocytes and liver tissues. 3-hydroxy-3-methylglutaryl coenzyme A synthetase 2 (HMGCS2) knockdown mitigated the effects of BPS on hepatocytes and reverses the expression of ferroptosis-related markers. Thus, BPS exposure aggravates HFD-induced NAFLD by regulating HMGCS2-mediated ferroptosis. Collectively, our study indicates that BPS exposure at environmentally relevant concentrations may aggravate NAFLD phenotypes under HFD conditions, highlighting the health risks of BPS to the liver.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"5 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137166","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bisphenol S (BPS) is a widely detected environmental toxin with the potential to increase the risk of non-alcoholic fatty liver disease (NAFLD). However, the effects of BPS on the progression of high fat diet (HFD)-induced NAFLD remain unclear. This study aimed to explore the role and underlying mechanisms of action of BPS in HFD-induced NAFLD. Our results showed that BPS exposure (50 and 500 μg/kg bodyweight/day) promoted the progression of NAFLD, which was evidenced by increased liver/body weight ratio, elevated serum alanine aminotransferase and aspartate aminotransferase levels, and more and larger lipid droplets in liver tissues. These phenomena were accompanied by abnormal expression levels of fatty acid uptake (Cd36), fatty acid synthesis (Pparγ, Scd-1, and Fasn), fatty acid oxidation (Pparα), and cytokines (TNFα, IL-1β, and IL-6). In vitro and in vivo studies showed that BPS exposure caused hepatic ferroptosis by regulating ferroptosis-related markers (GPX4, xCT, FTH, and ACSL4). Moreover, BPS exposure caused ROS overproduction, mitochondrial dysfunction, lipid peroxidation, and GSH suppression, all of which were restored by ferrostatin-1, a ferroptosis inhibitor. Moreover, BPS significantly upregulated HMGCS2 expression in the hepatocytes and liver tissues. 3-hydroxy-3-methylglutaryl coenzyme A synthetase 2 (HMGCS2) knockdown mitigated the effects of BPS on hepatocytes and reverses the expression of ferroptosis-related markers. Thus, BPS exposure aggravates HFD-induced NAFLD by regulating HMGCS2-mediated ferroptosis. Collectively, our study indicates that BPS exposure at environmentally relevant concentrations may aggravate NAFLD phenotypes under HFD conditions, highlighting the health risks of BPS to the liver.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.